198 resultados para Muscle shortening
em Université de Lausanne, Switzerland
Resumo:
Traditionally, studies dealing with muscle shortening have concentrated on assessing its impact on conduction velocity, and to this end, electrodes have been located between the end-plate and tendon regions. Possible morphologic changes in surface motor unit potentials (MUPs) as a result of muscle shortening have not, as yet, been evaluated or characterized. Using a convolutional MUP model, we investigated the effects of muscle shortening on the shape, amplitude, and duration characteristics of MUPs for different electrode positions relative to the fibre-tendon junction and for different depths of the MU in the muscle (MU-to-electrode distance). It was found that the effects of muscle shortening on MUP morphology depended not only on whether the electrodes were between the end-plate and the tendon junction or beyond the tendon junction, but also on the specific distance to this junction. When the electrodes lie between the end-plate and tendon junction, it was found that (1) the muscle shortening effect is not important for superficial MUs, (2) the sensitivity of MUP amplitude to muscle shortening increases with MU-to-electrode distance, and (3) the amplitude of the MUP negative phase is not affected by muscle shortening. This study provides a basis for the interpretation of the changes in MUP characteristics in experiments where both physiological and geometrical aspects of the muscle are varied.
Resumo:
The net mechanical efficiency of positive work (eta(pos)) has been shown to increase if it is immediately preceded by negative work. This phenomenon is explained by the storage of elastic energy during the negative phase and its release during the subsequent positive phase. If a transition time (T) takes place, the elastic energy is dissipated into heat. The aim of the present study was to investigate the relationship between eta(pos) and T, and to determine the minimal T required so that eta(pos) reached its minimal value. Seven healthy male subjects were tested during four series of lowering-raising of the body mass. In the first series (S (0)), the negative and positive phases were executed without any transition time. In the three other series, T was varied by a timer (0.12, 0.24 and 0.56 s for series S (1), S (2) and S (3), respectively). These exercises were performed on a force platform sensitive to vertical forces to measure the mechanical work and a gas analyser was used to determine the energy expenditure. The results indicated that eta(pos) was the highest (31.1%) for the series without any transition time (S (0)). The efficiencies observed with transition times (S (1), S (2) and S (3)) were 27.7, 26.0 and 23.8%, respectively, demonstrating that T plays an important role for mechanical efficiency. The investigation of the relationship between eta(pos) and T revealed that the minimal T required so that eta(pos) reached its minimal value is 0.59 s.
Resumo:
Tissue-engineered grafts for the urinary tract are being investigated for the potential treatment of several urologic diseases. These grafts, predominantly tubular-shaped, usually require in vitro culture prior to implantation to allow cell engraftment on initially cell-free scaffolds. We have developed a method to produce tubular-shaped collagen scaffolds based on plastic compression. Our approach produces a ready cell-seeded graft that does not need further in vitro culture prior to implantation. The tubular collagen scaffolds were in particular investigated for their structural, mechanical and biological properties. The resulting construct showed an especially high collagen density, and was characterized by favorable mechanical properties assessed by axial extension and radial dilation. Young modulus in particular was greater than non-compressed collagen tubes. Seeding densities affected proliferation rate of primary human bladder smooth muscle cells. An optimal seeding density of 10(6) cells per construct resulted in a 25-fold increase in Alamar blue-based fluorescence after 2 wk in culture. These high-density collagen gel tubes, ready seeded with smooth muscle cells could be further seeded with urothelial cells, drastically shortening the production time of graft for urinary tract regeneration.
Resumo:
BACKGROUND CONTEXT: Kyphotic deformities with sagittal imbalance of the spine can be treated with spinal osteotomies. Those procedures are known to have a high incidence of neurological complications, in particular at the thoracic level. Motor evoked potentials (MEPs) have been widely used in helping to avoid major neurological deficits postoperatively. Previous reports have shown that a significant proportion of such cases present with important transcranial MEP (Tc-MEP) changes during surgery with some of them being predictive of postoperative deficits. PURPOSE: Our aim was to study Tc-MEP changes in a consecutive series of patients and correlate them with clinical parameters and radiological changes. STUDY DESIGN/SETTING: Retrospective case notes study from a prospective patient register. PATIENT SAMPLE: Eighteen patients undergoing posterior shortening osteotomies (nine at thoracic and nine at lumbar levels) for kyphosis of congenital, degenerative, inflammatory, or post-traumatic origin were included. OUTCOME MEASURES: Loss of at least 80% of Tc-MEP signal expressed as the area under the curve percentual change, of at least one muscle. METHODS: We studied the relation between outcome measure (80% Tc-MEP loss in at least one muscle group) and amount of posterior vertebral body shortening as well as angular correction measured on computed tomography scans, occurrence of postoperative deficits, intraoperative blood pressure at the time of the osteotomy, and hemoglobin (Hb) change. RESULTS: All patients showed significant Tc-MEP changes. In particular, greater than 80% MEP loss in at least one muscle group was observed in five of nine patients in the thoracic group and four of nine patients in the lumbar group. No surgical maneuver was undertaken as a result of this loss in an effort to improve motor responses other than verifying the stability of the construct and the extent of the decompression. Four patients developed postoperative deficits of radicular origin, three of them recovering fully at 3 months. No relation was found between intraoperative blood pressure, Hb changes, and Tc-MEP changes. Severity of Tc-MEP loss did not correlate with postoperative deficits. Shortening of more than 10 mm was linked to more severe Tc-MEP changes in the thoracic group. CONCLUSIONS: Transcranial MEP changes during spinal shortening procedures are common and do not appear to predict severe postoperative deficits. Total loss of Tc-MEP (not witnessed in our series) might require a more drastic approach with possible reversal of the correction and wake-up test.
Resumo:
BACKGROUND: The Advisa MRI system is designed to safely undergo magnetic resonance imaging (MRI). Its influence on image quality is not well known. OBJECTIVE: To evaluate cardiac magnetic resonance (CMR) image quality and to characterize myocardial contraction patterns by using the Advisa MRI system. METHODS: In this international trial with 35 participating centers, an Advisa MRI system was implanted in 263 patients. Of those, 177 were randomized to the MRI group and 150 underwent MRI scans at the 9-12-week visit. Left ventricular (LV) and right ventricular (RV) cine long-axis steady-state free precession MR images were graded for quality. Signal loss along the implantable pulse generator and leads was measured. The tagging CMR data quality was assessed as the percentage of trackable tagging points on complementary spatial modulation of magnetization acquisitions (n=16) and segmental circumferential fiber shortening was quantified. RESULTS: Of all cine long-axis steady-state free precession acquisitions, 95% of LV and 98% of RV acquisitions were of diagnostic quality, with 84% and 93%, respectively, being of good or excellent quality. Tagging points were trackable from systole into early diastole (360-648 ms after the R-wave) in all segments. During RV pacing, tagging demonstrated a dyssynchronous contraction pattern, which was not observed in nonpaced (n = 4) and right atrial-paced (n = 8) patients. CONCLUSIONS: In the Advisa MRI study, high-quality CMR images for the assessment of cardiac anatomy and function were obtained in most patients with an implantable pacing system. In addition, this study demonstrated the feasibility of acquiring tagging data to study the LV function during pacing.
Resumo:
BACKGROUND: Dilated cardiomyopathy (DCM) is a leading cause of chronic morbidity and mortality in muscular dystrophy (MD) patients. Current pharmacological treatments are not yet able to counteract chronic myocardial wastage, thus novel therapies are being intensely explored. MicroRNAs have been implicated as fine regulators of cardiomyopathic progression. Previously, miR-669a downregulation has been linked to the severe DCM progression displayed by Sgcb-null dystrophic mice. However, the impact of long-term overexpression of miR-669a on muscle structure and functionality of the dystrophic heart is yet unknown. METHODS AND RESULTS: Here, we demonstrate that intraventricular delivery of adeno-associated viral (AAV) vectors induces long-term (18 months) miR-669a overexpression and improves survival of Sgcb-null mice. Treated hearts display significant decrease in hypertrophic remodeling, fibrosis, and cardiomyocyte apoptosis. Moreover, miR-669a treatment increases sarcomere organization, reduces ventricular atrial natriuretic peptide (ANP) levels, and ameliorates gene/miRNA profile of DCM markers. Furthermore, long-term miR-669a overexpression significantly reduces adverse remodeling and enhances systolic fractional shortening of the left ventricle in treated dystrophic mice, without significant detrimental consequences on skeletal muscle wastage. CONCLUSIONS: Our findings provide the first evidence of long-term beneficial impact of AAV-mediated miRNA therapy in a transgenic model of severe, chronic MD-associated DCM.
Resumo:
Mitochondrial (M) and lipid droplet (L) volume density (vd) are often used in exercise research. Vd is the volume of muscle occupied by M and L. The means of calculating these percents are accomplished by applying a grid to a 2D image taken with transmission electron microscopy; however, it is not known which grid best predicts these values. PURPOSE: To determine the grid with the least variability of Mvd and Lvd in human skeletal muscle. METHODS: Muscle biopsies were taken from vastus lateralis of 10 healthy adults, trained (N=6) and untrained (N=4). Samples of 5-10mg were fixed in 2.5% glutaraldehyde and embedded in EPON. Longitudinal sections of 60 nm were cut and 20 images were taken at random at 33,000x magnification. Vd was calculated as the number of times M or L touched two intersecting grid lines (called a point) divided by the total number of points using 3 different sizes of grids with squares of 1000x1000nm sides (corresponding to 1µm2), 500x500nm (0.25µm2) and 250x250nm (0.0625µm2). Statistics included coefficient of variation (CV), 1 way-BS ANOVA and spearman correlations. RESULTS: Mean age was 67 ± 4 yo, mean VO2peak 2.29 ± 0.70 L/min and mean BMI 25.1 ± 3.7 kg/m2. Mean Mvd was 6.39% ± 0.71 for the 1000nm squares, 6.01% ± 0.70 for the 500nm and 6.37% ± 0.80 for the 250nm. Lvd was 1.28% ± 0.03 for the 1000nm, 1.41% ± 0.02 for the 500nm and 1.38% ± 0.02 for the 250nm. The mean CV of the three grids was 6.65% ±1.15 for Mvd with no significant differences between grids (P>0.05). Mean CV for Lvd was 13.83% ± 3.51, with a significant difference between the 1000nm squares and the two other grids (P<0.05). The 500nm squares grid showed the least variability between subjects. Mvd showed a positive correlation with VO2peak (r = 0.89, p < 0.05) but not with weight, height, or age. No correlations were found with Lvd. CONCLUSION: Different size grids have different variability in assessing skeletal muscle Mvd and Lvd. The grid size of 500x500nm (240 points) was more reliable than 1000x1000nm (56 points). 250x250nm (1023 points) did not show better reliability compared with the 500x500nm, but was more time consuming. Thus, choosing a grid with square size of 500x500nm seems the best option. This is particularly relevant as most grids used in the literature are either 100 points or 400 points without clear information on their square size.
Resumo:
Aging is commonly associated with a loss of muscle mass and strength, resulting in falls, functional decline, and the subjective feeling of weakness. Exercise modulates the morbidities of muscle aging. Most studies, however, have examined muscle-loss changes in sedentary aging adults. This leaves the question of whether the changes that are commonly associated with muscle aging reflect the true physiology of muscle aging or whether they reflect disuse atrophy. This study evaluated whether high levels of chronic exercise prevents the loss of lean muscle mass and strength experienced in sedentary aging adults. A cross-section of 40 high-level recreational athletes ("masters athletes") who were aged 40 to 81 years and trained 4 to 5 times per week underwent tests of health/activity, body composition, quadriceps peak torque (PT), and magnetic resonance imaging of bilateral quadriceps. Mid-thigh muscle area, quadriceps area (QA), subcutaneous adipose tissue, and intramuscular adipose tissue were quantified in magnetic resonance imaging using medical image processing, analysis, and visualization software. One-way analysis of variance was used to examine age group differences. Relationships were evaluated using Spearman correlations. Mid-thigh muscle area (P = 0.31) and lean mass (P = 0.15) did not increase with age and were significantly related to retention of mid-thigh muscle area (P < 0.0001). This occurred despite an increase in total body fat percentage (P = 0.003) with age. Mid-thigh muscle area (P = 0.12), QA (P = 0.17), and quadriceps PT did not decline with age. Specific strength (strength per QA) did not decline significantly with age (P = 0.06). As muscle area increased, PT increased significantly (P = 0.008). There was not a significant relationship between intramuscular adipose tissue (P = 0.71) or lean mass (P = 0.4) and PT. This study contradicts the common observation that muscle mass and strength decline as a function of aging alone. Instead, these declines may signal the effect of chronic disuse rather than muscle aging. Evaluation of masters athletes removes disuse as a confounding variable in the study of lower-extremity function and loss of lean muscle mass. This maintenance of muscle mass and strength may decrease or eliminate the falls, functional decline, and loss of independence that are commonly seen in aging adults.
Resumo:
Abstract : The term "muscle disuse" is often used to refer collectively to reductions in neuromuscular activity as observed with sedentary lifestyles, reduced weight bearing, cancer, chronic obstructive pulmonary disease, chronic heart failure, spinal cord injury, sarcopenia or exposure to microgravity (spaceflight). Muscle disuse atrophy, caused by accelerated proteolysis, is predominantly due to the activation of the ATP-dependent ubiquitin (Ub) proteasome pathway. The current advances in understanding the molecular factors contributing to the Ub-dependent proteolysis process have been made mostly in rodent models of human disease and denervation with few investigations performed directly in humans. Recently, in mice, the genes Atrogin-1 and MuRF1 have been designated as primary candidates in the control of muscle atrophy. Additionally, the decreased activity of the Akt/GSK-3ß and Akt/mTOR pathways has been associated with a reduction in protein synthesis and contributing to skeletal muscle atrophy. Therefore, it is now commonly accepted that skeletal muscle atrophy is the result of a decreased protein synthesis concomitant with an increase in protein degradation (Glass 2003). Atrogin-1 and MuRF1 are genes expressed exclusively in muscle. In mice, their expression has been shown to be directly correlated with the severity of atrophy. KO-mice experiments showed a major protection against atrophy when either of these genes were deleted. Skeletal muscle hypertrophy is an important function in normal postnatal development and in the adaptive response to exercise. It has been shown, in vitro, that the activation of phosphatidylinositol 3-kinase (PI-3K), by insulin growth factor 1 (IGF-1), stimulates myotubes hypertrophy by activating the downstream pathways, Akt/GSK-3ß and Akt/mTOR. It has also been demonstrated in mice, in vivo, that activation of these signalling pathways causes muscle hypertrophy. Moreover, the latter were recently proposed to also reduce muscle atrophy by inhibiting the FKHR mediated transcription of several muscle atrophy genes; Atrogin-1 and MuRF1. Therefore, these targets present new avenues for developing further the understanding of the molecular mechanisms involved in both skeletal muscle atrophy and hypertrophy. The present study proposed to investigate the regulation of the Akt/GSK-3ß and Akt/mTOR signalling pathways, as well as the expression levels of the "atrogenes", Atrogin-1 and MuRF1, in four human models of skeletal muscle atrophy. In the first study, we measured the regulation of the Akt signalling pathway after 8 weeks of both hypertrophy stimulating resistance training and atrophy stimulation de-training. As expected following resistance training, muscle hypertrophy and an increase in the phosphorylation status of the different members of the Akt pathway was observed. This was paralleled by a concomitant decrease in FOXO1 nuclear protein content. Surprisingly, exercise training also induced an increase in the, expression of the atrophy genes and proteins involved in the ATP-dependant ubiquitin-proteasome system. On the opposite, following the de-training period a muscle atrophy, relative to the post-training muscle size, was measured. At the same time, the phosphorylation levels of Akt and GSK-3ß were reduced while the amount of FOXO1 in the nucleus increased. After the atrophy phase, there was also a reduction in Atrogin-1 and MuRF1 contents. In this study, we demonstrate for the first time in healthy human skeletal muscle, that the regulation of Akt and its downstream targets GSK-3ß, mTOR and FOXO1 are associated with both thé skeletal muscle hypertrophy and atrophy processes. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of both upper and lower motor neurons, which leads to severe muscle weakness and atrophy. All measurements were performed in biopsies from 22 ALS patients and 16 healthy controls. ALS patients displayed an increase in Atrogin-1 mRNA and protein content which was associated with a decrease in Akt activity. However there was no difference in the mRNA and phospho-protein content of FOXO1, FOXO3a, p70S6K and GSK-3ß. The transcriptional regulation of human Atrogin-1 may be controlled by an Akt-mediated transcription factor other than FKHR or via an other signalling pathway. Chronic complete spinal cord injury (SCI) is associated with severe muscle atrophy which is linked to co-morbidity factors such as diabetes, obesity, lipid disorders and cardiovascular diseases. Molecular mechanisms associated with chronic complete SCI-related muscle atrophy are not well understood. The aim of the present study was to determine if there was an increase in catabolic signalling targets such as Atrogin-1, MuRF1, FOXO and myostatin, and decreases in anabolic signalling targets such as IGF, Akt, GSK-3ß, mTOR, 4E-BP1 and p-70S6K in chronic complete SCI patients. All measurements were performed in biopsies taken from 8 complete chronic SCI patients and 7 age matched healthy controls. In SCI patients when compared with controls, there was a significant reduction in mRNA levels of Atrogin1, MuRF1 and Myostatin. Protein levels for Atrogin-1, FOX01 and FOX03a were also reduced. IGF-1 and both phosphorylated GSK-3ß and 4E-BP1 were decreased; the latter two in an Akt and mTOR independent manner, respectively. Reductions in Atrogin-1, MuRF1, FOXO and myostatin suggest the existence of an internal mechanism aimed at reducing further loss of muscle proteins during chronic SCI. The downregulation of signalling proteins regulating anabolism such as IGF, GSK3ß and 4E-BP1 would reduce the ability to increase protein synthesis rates in this chronic state of muscle wasting. The molecular mechanisms controlling age-related skeletal muscle loss in humans are poorly understood. The present study aimed to investigate the regulation of several genes and proteins involved in the activation of key signalling pathways promoting muscle hypertrophy such as GH/STAT5/IGF, IGF/Akt/GSK-3ß/4E-BP1 and muscle atrophy such as TNFα/SOCS3 and Akt/FOXO/Atrogin-1 or MuRF1 in muscle biopsies from 13 young and 16 elderly men. In the older, as compared with the young subjects, TNFα and SOCS-3 were increased while growth hormone receptor protein (GHR) and IGF-1 mRNA were both decreased. Akt protein levels were increased however no change in phosphorylated Akt content was observed. GSK-3ß phosphorylation levels were increased while 4E-BP1 was not changed. Nuclear FKHR and FKHRL1 protein levels were decreased, with no changes in their atrophy target genes, Atrogin-1 and MuRF1. Myostatin mRNA and protein levels were significantly elevated. Human sarcopenia may be linked to a reduction in the activity or sensitivity of anabolic signalling proteins such as GHR, IGF and Akt. TNFα, SOCS-3 and myostatin are potential candidates influencing this anabolic perturbation. In conclusion our results support those obtained in rodent or ín vitro models, and demonstrate Akt plays a pivotal role in the control of muscle mass in humans. However, the Akt phosphorylation status was dependant upon the model of muscle atrophy as Akt phosphorylation was reduced in all atrophy models except for SCI. Additionally, the activity pattern of the downstream targets of Akt appears to be different upon the various human models. It seems that under particular conditions such as spinal cord injury or sarcopenia, .the regulation of GSK-3ß, 4eBP1 and p70S6K might be independent of Akt suggesting alternative signalling pathways in the control of these the anabolic response in human skeletal muscle. The regulation of Atrogin-1 and MuRF1 in some of our studies has been shown to be also independent of the well-described Akt/FOXO signalling pathway suggesting that other transcription factors may regulate human Atrogin-1 and MuRF1. These four different models of skeletal muscle atrophy and hypertrophy have brought a better understanding concerning the molecular mechanisms controlling skeletal muscle mass in humans.
Resumo:
This study investigates in vitro growth of human urinary tract smooth muscle cells under static conditions and mechanical stimulation. The cells were cultured on collagen type I- and laminin-coated silicon membranes. Using a Flexcell device for mechanical stimulation, a cyclic strain of 0-20% was applied in a strain-stress-time model (stretch, 104 min relaxation, 15 s), imitating physiological bladder filling and voiding. Cell proliferation and alpha-actin, calponin, and caldesmon phenotype marker expression were analyzed. Nonstretched cells showed significant better growth on laminin during the first 8 days, thereafter becoming comparable to cells grown on collagen type I. Cyclic strain significantly reduced cell growth on both surfaces; however, better growth was observed on laminin. Neither the type of surface nor mechanical stimulation influenced the expression pattern of phenotype markers; alpha-actin was predominantly expressed. Coating with the extracellular matrix protein laminin improved in vitro growth of human urinary tract smooth muscle cells.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.