37 resultados para Multiphase flow with interphase exchanges

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n this paper the iterative MSFV method is extended to include the sequential implicit simulation of time dependent problems involving the solution of a system of pressure-saturation equations. To control numerical errors in simulation results, an error estimate, based on the residual of the MSFV approximate pressure field, is introduced. In the initial time steps in simulation iterations are employed until a specified accuracy in pressure is achieved. This initial solution is then used to improve the localization assumption at later time steps. Additional iterations in pressure solution are employed only when the pressure residual becomes larger than a specified threshold value. Efficiency of the strategy and the error control criteria are numerically investigated. This paper also shows that it is possible to derive an a-priori estimate and control based on the allowed pressure-equation residual to guarantee the desired accuracy in saturation calculation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Quantification of myocardial blood flow (MBF) with generator-produced (82)Rb is an attractive alternative for centres without an on-site cyclotron. Our aim was to validate (82)Rb-measured MBF in relation to that measured using (15)O-water, as a tracer 100% of which can be extracted from the circulation even at high flow rates, in healthy control subject and patients with mild coronary artery disease (CAD). METHODS: MBF was measured at rest and during adenosine-induced hyperaemia with (82)Rb and (15)O-water PET in 33 participants (22 control subjects, aged 30 ± 13 years; 11 CAD patients without transmural infarction, aged 60 ± 13 years). A one-tissue compartment (82)Rb model with ventricular spillover correction was used. The (82)Rb flow-dependent extraction rate was derived from (15)O-water measurements in a subset of 11 control subjects. Myocardial flow reserve (MFR) was defined as the hyperaemic/rest MBF. Pearson's correlation r, Bland-Altman 95% limits of agreement (LoA), and Lin's concordance correlation ρ (c) (measuring both precision and accuracy) were used. RESULTS: Over the entire MBF range (0.66-4.7 ml/min/g), concordance was excellent for MBF (r = 0.90, [(82)Rb-(15)O-water] mean difference ± SD = 0.04 ± 0.66 ml/min/g, LoA = -1.26 to 1.33 ml/min/g, ρ(c) = 0.88) and MFR (range 1.79-5.81, r = 0.83, mean difference = 0.14 ± 0.58, LoA = -0.99 to 1.28, ρ(c) = 0.82). Hyperaemic MBF was reduced in CAD patients compared with the subset of 11 control subjects (2.53 ± 0.74 vs. 3.62 ± 0.68 ml/min/g, p = 0.002, for (15)O-water; 2.53 ± 1.01 vs. 3.82 ± 1.21 ml/min/g, p = 0.013, for (82)Rb) and this was paralleled by a lower MFR (2.65 ± 0.62 vs. 3.79 ± 0.98, p = 0.004, for (15)O-water; 2.85 ± 0.91 vs. 3.88 ± 0.91, p = 0.012, for (82)Rb). Myocardial perfusion was homogeneous in 1,114 of 1,122 segments (99.3%) and there were no differences in MBF among the coronary artery territories (p > 0.31). CONCLUSION: Quantification of MBF with (82)Rb with a newly derived correction for the nonlinear extraction function was validated against MBF measured using (15)O-water in control subjects and patients with mild CAD, where it was found to be accurate at high flow rates. (82)Rb-derived MBF estimates seem robust for clinical research, advancing a step further towards its implementation in clinical routine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetrasomy 8 constitutes a relatively rare recurring chromosome defect in myeloid disorders. The patient reported here, a 71-year-old man, presented with tetrasomy 8 as the sole chromosome abnormality associated with an acute nonlymphocytic leukemia of the M2 type. He failed to respond to chemotherapy and died one year after diagnosis. Following conventional cytogenetics and fluorescence in situ hybridization (FISH) with a centromeric probe specific for chromosome 8, tetrasomy 8 was detected in 61% of the metaphases analyzed and trisomy 8 in 39%. FISH analysis of interphase nuclei confirmed the existence of tetrasomic (35%) and trisomic cells (56%) and revealed a number of cells with two chromosomes 8 (8%). This normal population may represent lymphocytes or myeloid cells that escaped conventional analysis due to their inability to divide or to the small number of metaphases available. The relatively higher proportion of tetrasomic cells in metaphase compared with interphase may be attributed to a proliferative advantage of tetrasomic cells in vitro or to the longer duration of their cell cycle. The simultaneous presence of trisomic and tetrasomic cells confirms the hypothesis of a clonal relationship between trisomy 8 and tetrasomy 8. Our case brings further evidence to the specificity of tetrasomy 8 to myeloid disorders and to the association of this chromosome abnormality with a relatively poor prognosis. However, new patients must be studied to further delineate this cytogenetic entity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY: The shrews of the Sorex araneus group are morphologically .very similar, but have undergone a spectacular chromosomal evolution. Altogether, the shrews of this group present a complete array of every possible level of chromosomal and genetic differentiation. In South-Western Europe, four species are recognised: S. antiriorii, S. araneus, S. coronatus and S. granarius, which differ essentially by the amount and the composition of Robertsonian metacentric chromosomés. Additionally, several chromosome races of S. araneus are also present in the same region (i.e. Bretolet, Carlit, Cordon, Jura and Vaud). The objective of this thesis was to examine the genetic relationships between populations, races and /or species of the Sorex araneus group with a special emphasis onsex-specific markers (mtDNA and Y chromosome). We first investigate the evolutionary history of the shrews of the Sorex araneus group distributed in the South-Western Europe. The results of. these analyses confirmed the difficulty to draw a single dichotomic tree within this group. Incongruent mtDNA and Y chromosome phylogenies suggest further that genetic and chromosomal evolution are in this group partially independent processes and that the evolutionary history of the south-western European populations of the S. araneus group can only be understood if we consider secondary contacts between taxa, after their divergence (with genetic exchanges by means of hybridization and / or introgression). Using one male-inherited, one female inherited and eight biparentally inherited markers, we investigate the population genetic structure of the Valais shrew (Sorex antinorii). Overall there results suggest that two already well-differentiated genetic lineages colonized the Swiss Alps after the last glacial period and came into contact in the Rhône Valley. After the Valais shrew (Sorex antinorii) reached the Swiss Alps, it came into contact with the common shrew (Sorex araneus). When two species come into contact and hybridize, endogenous counter-selection of hybrids is usually first expressed as a reduced fertility or viability in hybrids of the heterogametic sex, a mechanism know as Haldane's rule (Haldane 1922). We first evaluated the extent of introgression for Y chromosome, mtDNA and autosomal markers in a hybrid zone between S. antinoriii and S. araneus. The overall level of genetic and karyotypic differentiation between the two species must be strong .enough to allow the detection asymmetric introgression. Secondly, we compared the levels of gene flow between chromosome common to both species and chromosome differently rearranged in each of them. We detected a significantly stronger genetic structure in rearranged chromosomes. Over a 10-year period, we even observed a decrease of genetic structure for common chromosomes. These results strongly support the role of chromosomal rearrangements in the reproductive barrier between S. araneus and S. anfinorii. Overall, this thesis underlines the need to use different inherited (paternally, maternally and / or biparentally) and chromosomally located (on common vs. on rearranged chromosomes) markers to obtain more accurate pictures of genetic relationships between populations or species. RÉSUMÉ: Les musaraignes du groupe Sorex araneus sont morphologiquement très proches, mais ont connu une spectaculaire évolution chromosomique. Prises dans leur ensemble, les musaraignes de ce groupe présentent tous les nivaux possibles de différenciation génétique et chromosomique. Dans le sud-ouest de l'Europe, quatre espèces appartenant à ce groupe sont présentes : S. antinorii, S. araneus, S. coronatus et S. granarius. Celles-ci diffèrent essentiellement par leur caryotype dont la variabilité est principalement due à des fusions Robertsoniennes. De plus, plusieurs races chromosomiques appartenant à S. araneus sont aussi présentes dans la même région (i.e. les races Bretolet, Carlit, Cordon, Jura et Vaud). L'objectif de cette thèse était d'examiner les relations génétiques entre populations, races et/ou espèces du groupe S. araneus, en utilisant particulièrement des marqueurs liés aux sexes (ADN mitochondrial et Chromosome Y). Nous avons dans un premier temps retracé l'histoire évolutive des musaraignes de ce groupe dans le sud-ouest de l'Europe. Les résultats dé ces analyses confirment qu'il est difficile de tracer un simple arbre dichotomique au sein de ce groupe. Les arbres phylogénétiques obtenus sur l'ADN mitochondrial et le chromosome Y sont incongruents et suggèrent de plus que l'évolution génétique et chromosomique sont des processus indépendants. L'histoire évolutive -des populations de ce groupe ne peut. être comprise qu'en considérant des contacts secondaires entre taxa postérieure à leur divergence et induisant des échanges génétiques par hybridation et/ou introgression. Par la suite, nous avons examiné la structure génétique des populations de la musaraigne du Valais, S. antinorii, en utilisant un marqueur transmis par les mâles, un marqueur transmis par les femelles et huit marqueurs transmis par les 2 sexes. Nos résultats suggèrent que deux lignées génétiquement bien différenciées aient colonisé les Alpes Suisses, après les dernières glaciations et entrent en contact dans là Vallée du Rhône. Après avoir franchi les Alpes Suisses, la musaraigne du Valais est entrée en contact avec là musaraigne commune (S. araneus). Lorsque deux espèces entrent en contact et s'hybrident, la sélection contre les hybrides implique habituellement une baisse de fertilité ou de viabilité des hybrides du sexe hétérogamétique (i.e. les mâles XY chez les mammifères). Ce mécanisme est connu sous le nom de règle de Haldane (Haldane 1922) et implique une plus forte structuration génétique de marqueurs males - spécifiques que des marqueurs femelles spécifiques. Nous avons donc évalué le degré d'introgression des marqueurs situés sur le chromosome Y, sur l'ADN mitochondrial et sur des autosomes dans une zone hybride entre S. araneus et S. antinorii. Le niveau de différenciation chromosomique et génétique entre les 2 espèces doit être suffisamment fort pour ne pas permettre la détection d'une introgression asymétrique entre les sexes. Dans un second temps, nous avons comparé les niveaux de flux de gênes mesurés à l'échelle du chromosome, pour des chromosomes communs aux deux espèces et pour des chromosomes différemment arrangées dans chacune des deux espèces. Nous avons détecté une structure génétique significativement plus forte sur les chromosomes réarrangés et comme la zone hybride a été étudiée à dix années d'intervalle, nous observons même une diminution de la structure génétique pour les chromosomes communs au cours du temps.. Ces résultats soutiennent fortement l'hypothèse d'un rôle des réarrangements chromosomiques dans l'établissement d'une barrière reproductive entre S. araneus et S. antinorii. Ainsi cette thèse souligne l'utilité d'utiliser des marqueurs génétiques avec différents modes de transmission. (par les mâles, par les femelles et/ou par les 2 sexes) ou localisés au niveau du chromosome (chromosomes communs vs chromosomes réarrangés) afin d'obtenir une image plus juste ou du moins plus complète des relations génétiques entre populations ou espèces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiscale finite-volume (MSFV) method has been derived to efficiently solve large problems with spatially varying coefficients. The fine-scale problem is subdivided into local problems that can be solved separately and are coupled by a global problem. This algorithm, in consequence, shares some characteristics with two-level domain decomposition (DD) methods. However, the MSFV algorithm is different in that it incorporates a flux reconstruction step, which delivers a fine-scale mass conservative flux field without the need for iterating. This is achieved by the use of two overlapping coarse grids. The recently introduced correction function allows for a consistent handling of source terms, which makes the MSFV method a flexible algorithm that is applicable to a wide spectrum of problems. It is demonstrated that the MSFV operator, used to compute an approximate pressure solution, can be equivalently constructed by writing the Schur complement with a tangential approximation of a single-cell overlapping grid and incorporation of appropriate coarse-scale mass-balance equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les problèmes d'écoulements multiphasiques en média poreux sont d'un grand intérêt pour de nombreuses applications scientifiques et techniques ; comme la séquestration de C02, l'extraction de pétrole et la dépollution des aquifères. La complexité intrinsèque des systèmes multiphasiques et l'hétérogénéité des formations géologiques sur des échelles multiples représentent un challenge majeur pour comprendre et modéliser les déplacements immiscibles dans les milieux poreux. Les descriptions à l'échelle supérieure basées sur la généralisation de l'équation de Darcy sont largement utilisées, mais ces méthodes sont sujettes à limitations pour les écoulements présentant de l'hystérèse. Les avancées récentes en terme de performances computationnelles et le développement de méthodes précises pour caractériser l'espace interstitiel ainsi que la distribution des phases ont favorisé l'utilisation de modèles qui permettent une résolution fine à l'échelle du pore. Ces modèles offrent un aperçu des caractéristiques de l'écoulement qui ne peuvent pas être facilement observées en laboratoire et peuvent être utilisé pour expliquer la différence entre les processus physiques et les modèles à l'échelle macroscopique existants. L'objet premier de la thèse se porte sur la simulation numérique directe : les équations de Navier-Stokes sont résolues dans l'espace interstitiel et la méthode du volume de fluide (VOF) est employée pour suivre l'évolution de l'interface. Dans VOF, la distribution des phases est décrite par une fonction fluide pour l'ensemble du domaine et des conditions aux bords particulières permettent la prise en compte des propriétés de mouillage du milieu poreux. Dans la première partie de la thèse, nous simulons le drainage dans une cellule Hele-Shaw 2D avec des obstacles cylindriques. Nous montrons que l'approche proposée est applicable même pour des ratios de densité et de viscosité très importants et permet de modéliser la transition entre déplacement stable et digitation visqueuse. Nous intéressons ensuite à l'interprétation de la pression capillaire à l'échelle macroscopique. Nous montrons que les techniques basées sur la moyenne spatiale de la pression présentent plusieurs limitations et sont imprécises en présence d'effets visqueux et de piégeage. Au contraire, une définition basée sur l'énergie permet de séparer les contributions capillaires des effets visqueux. La seconde partie de la thèse est consacrée à l'investigation des effets d'inertie associés aux reconfigurations irréversibles du ménisque causé par l'interface des instabilités. Comme prototype pour ces phénomènes, nous étudions d'abord la dynamique d'un ménisque dans un pore angulaire. Nous montrons que, dans un réseau de pores cubiques, les sauts et reconfigurations sont si fréquents que les effets d'inertie mènent à différentes configurations des fluides. A cause de la non-linéarité du problème, la distribution des fluides influence le travail des forces de pression, qui, à son tour, provoque une chute de pression dans la loi de Darcy. Cela suggère que ces phénomènes devraient être pris en compte lorsque que l'on décrit l'écoulement multiphasique en média poreux à l'échelle macroscopique. La dernière partie de la thèse s'attache à démontrer la validité de notre approche par une comparaison avec des expériences en laboratoire : un drainage instable dans un milieu poreux quasi 2D (une cellule Hele-Shaw avec des obstacles cylindriques). Plusieurs simulations sont tournées sous différentes conditions aux bords et en utilisant différents modèles (modèle intégré 2D et modèle 3D) afin de comparer certaines quantités macroscopiques avec les observations au laboratoire correspondantes. Malgré le challenge de modéliser des déplacements instables, où, par définition, de petites perturbations peuvent grandir sans fin, notre approche numérique apporte de résultats satisfaisants pour tous les cas étudiés. - Problems involving multiphase flow in porous media are of great interest in many scientific and engineering applications including Carbon Capture and Storage, oil recovery and groundwater remediation. The intrinsic complexity of multiphase systems and the multi scale heterogeneity of geological formations represent the major challenges to understand and model immiscible displacement in porous media. Upscaled descriptions based on generalization of Darcy's law are widely used, but they are subject to several limitations for flow that exhibit hysteric and history- dependent behaviors. Recent advances in high performance computing and the development of accurate methods to characterize pore space and phase distribution have fostered the use of models that allow sub-pore resolution. These models provide an insight on flow characteristics that cannot be easily achieved by laboratory experiments and can be used to explain the gap between physical processes and existing macro-scale models. We focus on direct numerical simulations: we solve the Navier-Stokes equations for mass and momentum conservation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. In the VOF the distribution of the phases is described by a fluid function (whole-domain formulation) and special boundary conditions account for the wetting properties of the porous medium. In the first part of this thesis we simulate drainage in a 2-D Hele-Shaw cell filled with cylindrical obstacles. We show that the proposed approach can handle very large density and viscosity ratios and it is able to model the transition from stable displacement to viscous fingering. We then focus on the interpretation of the macroscopic capillary pressure showing that pressure average techniques are subject to several limitations and they are not accurate in presence of viscous effects and trapping. On the contrary an energy-based definition allows separating viscous and capillary contributions. In the second part of the thesis we investigate inertia effects associated with abrupt and irreversible reconfigurations of the menisci caused by interface instabilities. As a prototype of these phenomena we first consider the dynamics of a meniscus in an angular pore. We show that in a network of cubic pores, jumps and reconfigurations are so frequent that inertia effects lead to different fluid configurations. Due to the non-linearity of the problem, the distribution of the fluids influences the work done by pressure forces, which is in turn related to the pressure drop in Darcy's law. This suggests that these phenomena should be taken into account when upscaling multiphase flow in porous media. The last part of the thesis is devoted to proving the accuracy of the numerical approach by validation with experiments of unstable primary drainage in a quasi-2D porous medium (i.e., Hele-Shaw cell filled with cylindrical obstacles). We perform simulations under different boundary conditions and using different models (2-D integrated and full 3-D) and we compare several macroscopic quantities with the corresponding experiment. Despite the intrinsic challenges of modeling unstable displacement, where by definition small perturbations can grow without bounds, the numerical method gives satisfactory results for all the cases studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Visualization of coronary blood flow by means of a slice-selective inversion pre-pulse in concert with bright-blood coronary MRA. MATERIALS AND METHODS: Coronary magnetic resonance angiography (MRA) of the right coronary artery (RCA) was performed in eight healthy adult subjects on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Medical Systems, Best, NL) using a free-breathing navigator-gated and cardiac-triggered 3D steady-state free-precession (SSFP) sequence with radial k-space sampling. Imaging was performed with and without a slice-selective inversion pre-pulse, which was positioned along the main axis of the coronary artery but perpendicular to the imaging volume. Objective image quality parameters such as SNR, CNR, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: In contrast to conventional bright-blood 3D coronary MRA, the selective inversion pre-pulse provided a direct measure of coronary blood flow. In addition, CNR between the RCA and right ventricular blood pool was increased and the vessels had a tendency towards better delineation. Blood SNR and CNR between right coronary blood and epicardial fat were comparable in both sequences. CONCLUSION: The combination of a free-breathing navigator-gated and cardiac-triggered 3D SSFP sequence with a slice-selective inversion pre-pulse allows for direct and directional visualization of coronary blood flow with the additional benefit of improved contrast between coronary and right ventricular blood pool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform direct numerical simulations of drainage by solving Navier- Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and to model the transition from stable flow to viscous fingering, we focus on the definition of macroscopic capillary pressure. When the fluids are at rest, the difference between inlet and outlet pressures and the difference between the intrinsic phase average pressure coincide with the capillary pressure. However, when the fluids are in motion these quantities are dominated by viscous forces. In this case, only a definition based on the variation of the interfacial energy provides an accurate measure of the macroscopic capillary pressure and allows separating the viscous from the capillary pressure components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the 32nd case of congenital absence of portal vein in an 18-year-old female adult associated with multiple focal nodular hyperplasia of the liver. The association of various hepatic tumors has been observed in half of the publications about congenital absence of portal vein. Hepatic tumors seem to result from systemic diversion of portal vein flow with a resultant increase of arterial flow causing important vascular and nutritif changes the liver and consequent parenchymal transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: During open heart surgery, so-called atrial chatter, a phenomenon due to right atria and/or caval collapse, is frequently observed. Collapse of the cava axis during cardiopulmonary bypass (CPB) limits venous drainage and may result downstream in reduced pump flow on (lack of volume) and upstream in increased after-load (stagnation), which in turn may both result in reduced or even inadequate end-organ perfusion. The goal of this study was to reproduce venous collapse in the flow bench. METHODS: In accordance with literature for venous anatomy, a caval tree system is designed (polyethylene, thickness 0.061 mm), which receives venous inflow from nine afferent veins. With water as medium and a preload of 4.4 mmHg, the system has an outflow of 4500 ml/min (Scenario A). After the insertion of a percutaneous venous cannula (23-Fr), the venous model is continuously served by the afferent branches in a venous test bench and venous drainage is augmented with a centrifugal pump (Scenario B). RESULTS: With gravity drainage (siphon: A), spontaneously reversible atrial chatter can be generated in reproducible fashion. Slight reduction in the outflow diameter allows for generation of continuous flow. With augmentation (B), irreversible collapse of the artificial vena cava occurs in reproducible fashion at a given pump speed of 2300 ± 50 RPM and a pump inlet pressure of -112 mmHg. Furthermore, bubbles form at the cannula tip despite the fact that the entire system is immersed in water and air from the environment cannot enter the system. This phenomenon is also known as cavitation and should be avoided because of local damage of both formed blood elements and endothelium, as well embolization. CONCLUSIONS: This caval model provides a realistic picture for the limitations of flow due to spontaneously reversible atrial chatter vs irreversible venous collapse for a given negative pressure during CPB. Temporary interruption of negative pressure in the venous line can allow for recovery of venous drainage. This know-how can be used not only for testing different cannula designs, but also for further optimizing perfusion strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In early childhood, nonsteroidal anti-inflammatory drugs are mainly used to either prevent or treat premature labor of the mother and patent ductus arteriosus of the newborn infant. The most frequently used prostaglandin-synthesis inhibitor is indomethacin. Fetuses exposed to indomethacin in utero have been born with renal developmental defects, and in both the unborn child and the term and premature newborn this drug may compromise renal glomerular function. The latter has in the past also been observed when i.v. indomethacin or i.v. acetylsalicylic acid (aspirin) were administered to newborn rabbits. The present experiments were designed to evaluate whether ibuprofen has less renal side effects than indomethacin, as claimed. Three groups of anesthetized, ventilated, normoxemic neonatal rabbits were infused with increasing doses of ibuprofen (0.02, 0.2, 2.0 mg/kg body weight) and the following renal parameters were measured: urine volume, urinary sodium excretion, GFR, and renal plasma flow. Renal blood flow, filtration fraction, and the renal vascular resistance were calculated according to standard formulae. Intravenous ibuprofen caused a dose-dependent, significant reduction in urine volume, GFR, and renal blood flow with a fall in filtration fraction in the animals receiving the highest dose of ibuprofen (2 mg/kg body weight). There was a very steep rise in renal vascular resistance. Urinary sodium excretion decreased. These experiments in neonatal rabbits clearly show that acute i.v. doses of ibuprofen also have significant renal hemodynamic and functional side effects, not less than seen previously with indomethacin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIMS: Bicuspid aortic valve (BAV) causes complex flow patterns in the ascending aorta (AAo), which may compromise the accuracy of flow measurement by phase-contrast magnetic resonance (PC-MR). Therefore, we aimed to assess and compare the accuracy of forward flow measurement in the AAo, where complex flow is more dominant in BAV patients, with flow quantification in the left ventricular outflow tract (LVOT) and the aortic valve orifice (AV), where complex flow is less important, in BAV patients and controls. METHODS AND RESULTS: Flow was measured by PC-MR in 22 BAV patients and 20 controls at the following positions: (i) LVOT, (ii) AV, and (iii) AAo, and compared with the left ventricular stroke volume (LVSV). The correlation between the LVSV and the forward flow in the LVOT, the AV, and the AAo was good in BAV patients (r = 0.97/0.96/0.93; P < 0.01) and controls (r = 0.96/0.93/0.93; P < 0.01). However, in relation with the LVSV, the forward flow in the AAo was mildly underestimated in controls and much more in BAV patients [median (inter-quartile range): 9% (4%/15%) vs. 22% (8%/30%); P < 0.01]. This was not the case in the LVOT and the AV. The severity of flow underestimation in the AAo was associated with flow eccentricity. CONCLUSION: Flow measurement in the AAo leads to an underestimation of the forward flow in BAV patients. Measurement in the LVOT or the AV, where complex flow is less prominent, is an alternative means for quantifying the systolic forward flow in BAV patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: According to recent guidelines, patients with coronary artery disease (CAD) should undergo revascularization if significant myocardial ischemia is present. Both, cardiovascular magnetic resonance (CMR) and fractional flow reserve (FFR) allow for a reliable ischemia assessment and in combination with anatomical information provided by invasive coronary angiography (CXA), such a work-up sets the basis for a decision to revascularize or not. The cost-effectiveness ratio of these two strategies is compared. METHODS: Strategy 1) CMR to assess ischemia followed by CXA in ischemia-positive patients (CMR + CXA), Strategy 2) CXA followed by FFR in angiographically positive stenoses (CXA + FFR). The costs, evaluated from the third party payer perspective in Switzerland, Germany, the United Kingdom (UK), and the United States (US), included public prices of the different outpatient procedures and costs induced by procedural complications and by diagnostic errors. The effectiveness criterion was the correct identification of hemodynamically significant coronary lesion(s) (= significant CAD) complemented by full anatomical information. Test performances were derived from the published literature. Cost-effectiveness ratios for both strategies were compared for hypothetical cohorts with different pretest likelihood of significant CAD. RESULTS: CMR + CXA and CXA + FFR were equally cost-effective at a pretest likelihood of CAD of 62% in Switzerland, 65% in Germany, 83% in the UK, and 82% in the US with costs of CHF 5'794, euro 1'517, £ 2'680, and $ 2'179 per patient correctly diagnosed. Below these thresholds, CMR + CXA showed lower costs per patient correctly diagnosed than CXA + FFR. CONCLUSIONS: The CMR + CXA strategy is more cost-effective than CXA + FFR below a CAD prevalence of 62%, 65%, 83%, and 82% for the Swiss, the German, the UK, and the US health care systems, respectively. These findings may help to optimize resource utilization in the diagnosis of CAD.