80 resultados para Multimodal Logistics Platform
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Rectal and pararectal gastrointestinal stromal tumors (GISTs) are rare. The optimal management strategy for primary localized GISTs remains poorly defined. METHODS: We conducted a retrospective analysis of 41 patients with localized rectal or pararectal GISTs treated between 1991 and 2011 in 13 French Sarcoma Group centers. RESULTS: Of 12 patients who received preoperative imatinib therapy for a median duration of 7 (2-12) months, 8 experienced a partial response, 3 had stable disease, and 1 had a complete response. Thirty and 11 patients underwent function-sparing conservative surgery and abdominoperineal resection, respectively. Tumor resections were mostly R0 and R1 in 35 patients. Tumor rupture occurred in 12 patients. Eleven patients received postoperative imatinib with a median follow-up of 59 (2.4-186) months. The median time to disease relapse was 36 (9.8-62) months. The 5-year overall survival rate was 86.5%. Twenty patients developed local recurrence after surgery alone, two developed recurrence after resection combined with preoperative and/or postoperative imatinib, and eight developed metastases. In univariate analysis, the mitotic index (≤5) and tumor size (≤5 cm) were associated with a significantly decreased risk of local relapse. Perioperative imatinib was associated with a significantly reduced risk of overall relapse and local relapse. CONCLUSIONS: Perioperative imatinib therapy was associated with improved disease-free survival. Preoperative imatinib was effective. Tumor shrinkage has a clear benefit for local excision in terms of feasibility and function preservation. Given the complexity of rectal GISTs, referral of patients with this rare disease to expert centers to undergo a multidisciplinary approach is recommended.
Resumo:
OBJECTIVE:: To examine the accuracy of brain multimodal monitoring-consisting of intracranial pressure, brain tissue PO2, and cerebral microdialysis-in detecting cerebral hypoperfusion in patients with severe traumatic brain injury. DESIGN:: Prospective single-center study. PATIENTS:: Patients with severe traumatic brain injury. SETTING:: Medico-surgical ICU, university hospital. INTERVENTION:: Intracranial pressure, brain tissue PO2, and cerebral microdialysis monitoring (right frontal lobe, apparently normal tissue) combined with cerebral blood flow measurements using perfusion CT. MEASUREMENTS AND MAIN RESULTS:: Cerebral blood flow was measured using perfusion CT in tissue area around intracranial monitoring (regional cerebral blood flow) and in bilateral supra-ventricular brain areas (global cerebral blood flow) and was matched to cerebral physiologic variables. The accuracy of intracranial monitoring to predict cerebral hypoperfusion (defined as an oligemic regional cerebral blood flow < 35 mL/100 g/min) was examined using area under the receiver-operating characteristic curves. Thirty perfusion CT scans (median, 27 hr [interquartile range, 20-45] after traumatic brain injury) were performed on 27 patients (age, 39 yr [24-54 yr]; Glasgow Coma Scale, 7 [6-8]; 24/27 [89%] with diffuse injury). Regional cerebral blood flow correlated significantly with global cerebral blood flow (Pearson r = 0.70, p < 0.01). Compared with normal regional cerebral blood flow (n = 16), low regional cerebral blood flow (n = 14) measurements had a higher proportion of samples with intracranial pressure more than 20 mm Hg (13% vs 30%), brain tissue PO2 less than 20 mm Hg (9% vs 20%), cerebral microdialysis glucose less than 1 mmol/L (22% vs 57%), and lactate/pyruvate ratio more than 40 (4% vs 14%; all p < 0.05). Compared with intracranial pressure monitoring alone (area under the receiver-operating characteristic curve, 0.74 [95% CI, 0.61-0.87]), monitoring intracranial pressure + brain tissue PO2 (area under the receiver-operating characteristic curve, 0.84 [0.74-0.93]) or intracranial pressure + brain tissue PO2+ cerebral microdialysis (area under the receiver-operating characteristic curve, 0.88 [0.79-0.96]) was significantly more accurate in predicting low regional cerebral blood flow (both p < 0.05). CONCLUSION:: Brain multimodal monitoring-including intracranial pressure, brain tissue PO2, and cerebral microdialysis-is more accurate than intracranial pressure monitoring alone in detecting cerebral hypoperfusion at the bedside in patients with severe traumatic brain injury and predominantly diffuse injury.
Resumo:
Male and female Wistar rats were treated postnatally (PND 5-16) with BSO (l-buthionine-(S,R)-sulfoximine) to provide a rat model of schizophrenia based on transient glutathione deficit. In the watermaze, BSO-treated male rats perform very efficiently in conditions where a diversity of visual information is continuously available during orientation trajectories [1]. Our hypothesis is that the treatment impairs proactive strategies anticipating future sensory information, while supporting a tight visual adjustment on memorized snapshots, i.e. compensatory reactive strategies. To test this hypothesis, BSO rats' performance was assessed in two conditions using an 8-arm radial maze task: a semi-transparent maze with no available view on the environment from maze centre [2], and a modified 2-parallel maze known to induce a neglect of the parallel pair in normal rats [3-5]. Male rats, but not females, were affected by the BSO treatment. In the semi-transparent maze, BSO males expressed a higher error rate, especially in completing the maze after an interruption. In the 2-parallel maze shape, BSO males, unlike controls, expressed no neglect of the parallel arms. This second result was in accord with a reactive strategy using accurate memory images of the contextual environment instead of a representation based on integrating relative directions. These results are coherent with a treatment-induced deficit in proactive decision strategy based on multimodal cognitive maps, compensated by accurate reactive adaptations based on the memory of local configurations. Control females did not express an efficient proactive capacity in the semi-transparent maze, neither did they show the significant neglect of the parallel arms, which might have masked the BSO induced effect. Their reduced sensitivity to BSO treatment is discussed with regard to a sex biased basal cognitive style.
Resumo:
The review covers the development of synthetic peptides as vaccine candidates for Plasmodium falciparum- and Plasmodium vivax-induced malaria from its beginning up to date and the concomitant progress of solid phase peptide synthesis (SPPS) that enables the production of long peptides in a routine fashion. The review also stresses the development of other complementary tools and actions in order to achieve the long sought goal of an efficacious malaria vaccine.
Resumo:
Aging is ubiquitous to the human condition. The MRI correlates of healthy aging have been extensively investigated using a range of modalities, including volumetric MRI, quantitative MRI (qMRI), and diffusion tensor imaging. Despite this, the reported brainstem related changes remain sparse. This is, in part, due to the technical and methodological limitations in quantitatively assessing and statistically analyzing this region. By utilizing a new method of brainstem segmentation, a large cohort of 100 healthy adults were assessed in this study for the effects of aging within the human brainstem in vivo. Using qMRI, tensor-based morphometry (TBM), and voxel-based quantification (VBQ), the volumetric and quantitative changes across healthy adults between 19 and 75 years were characterized. In addition to the increased R2* in substantia nigra corresponding to increasing iron deposition with age, several novel findings were reported in the current study. These include selective volumetric loss of the brachium conjunctivum, with a corresponding decrease in magnetization transfer and increase in proton density (PD), accounting for the previously described "midbrain shrinkage." Additionally, we found increases in R1 and PD in several pontine and medullary structures. We consider these changes in the context of well-characterized, functional age-related changes, and propose potential biophysical mechanisms. This study provides detailed quantitative analysis of the internal architecture of the brainstem and provides a baseline for further studies of neurodegenerative diseases that are characterized by early, pre-clinical involvement of the brainstem, such as Parkinson's and Alzheimer's diseases.
Resumo:
Recently, the spin-echo full-intensity acquired localized (SPECIAL) spectroscopy technique was proposed to unite the advantages of short TEs on the order of milliseconds (ms) with full sensitivity and applied to in vivo rat brain. In the present study, SPECIAL was adapted and optimized for use on a clinical platform at 3T and 7T by combining interleaved water suppression (WS) and outer volume saturation (OVS), optimized sequence timing, and improved shimming using FASTMAP. High-quality single voxel spectra of human brain were acquired at TEs below or equal to 6 ms on a clinical 3T and 7T system for six volunteers. Narrow linewidths (6.6 +/- 0.6 Hz at 3T and 12.1 +/- 1.0 Hz at 7T for water) and the high signal-to-noise ratio (SNR) of the artifact-free spectra enabled the quantification of a neurochemical profile consisting of 18 metabolites with Cramér-Rao lower bounds (CRLBs) below 20% at both field strengths. The enhanced sensitivity and increased spectral resolution at 7T compared to 3T allowed a two-fold reduction in scan time, an increased precision of quantification for 12 metabolites, and the additional quantification of lactate with CRLB below 20%. Improved sensitivity at 7T was also demonstrated by a 1.7-fold increase in average SNR (= peak height/root mean square [RMS]-of-noise) per unit-time.
Resumo:
Arenaviruses are a large and diverse family of viruses that merit significant attention as causative agents of severe hemorrhagic fevers in humans. Lassa virus (LASV) in Africa and the South American hemorrhagic fever viruses Junin (JUNV), Machupo (MACV), and Guanarito (GTOV) have emerged as important human pathogens and represent serious public health problems in their respective endemic areas. A hallmark of fatal arenaviruses hemorrhagic fevers is a marked immunosuppression of the infected patients. Antigen presenting cells (APCs) such as macrophages and in particular dendritic cells (DCs) are early and preferred targets of arenaviruses infection. Instead of being recognized and presented as foreign antigens by DCs, arenaviruses subvert the normal mechanisms of pathogen recognition, invade DCs and establish a productive infection. Viral replication perturbs the DCs' ability to present antigens and to activate T and B cells, contributing to the marked virus-induced immunosuppression observed in fatal disease. Considering their crucial role in the development of an anti-viral immune response, the mechanisms by which arenaviruses, and in particular LASV, invade DCs are of particular interest. The C-type lectin DC-specific Intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) was recently identified as a potential entry receptor for LASV. The first project of my thesis focused therefore on the investigation of the role of DC-SIGN in LASV entry into primary human DCs. My data revealed that DC-SIGN serves as an attachment factor for LASV on human DCs and can facilitate capture of free virus and subsequent cell entry. However, in contrast to other emerging viruses, of the phlebovirus family, I found that DC-SIGN does likely not function as an authentic entry receptor for LASV. Moreover, I was able to show that LASV enters DCs via an unusually slow pathway that depends on actin, but is independent of clathrin and dynamin. Considering the lack of effective treatments and the limited public health infrastructure in endemic regions, the development of protective vaccines against arenaviruses is an urgent need. To address this issue, the second project of my thesis aimed at the development of a novel recombinant arenavirus vaccine based on a nanoparticle (NPs) platform and its evaluation in a small animal model. During the first phase of the project I designed, produced, and characterized suitable vaccine antigens. In the second phase of the project, I generated antigen-conjugated NPs, developed vaccine formulations, and tested the NPs for their ability to elicit anti-viral T cell responses as well as anti-viral antibodies. I demonstrated that the NPs platform is able to activate both cellular and humoral branches of the adaptive anti-viral immunity, providing proof-of-principle. In sum, my first project will allow, in a long term perspective, a better understanding of the viral pathogenesis and contribute to the development of novel antiviral strategies. The second project will expectidly offer a new treatment option against arenaviruses.
Resumo:
OBJECTIVE: Quality assurance (QA) in clinical trials is essential to ensure treatment is safely and effectively delivered. As QA requirements have increased in complexity in parallel with evolution of radiation therapy (RT) delivery, a need to facilitate digital data exchange emerged. Our objective is to present the platform developed for the integration and standardization of QART activities across all EORTC trials involving RT. METHODS: The following essential requirements were identified: secure and easy access without on-site software installation; integration within the existing EORTC clinical remote data capture system; and the ability to both customize the platform to specific studies and adapt to future needs. After retrospective testing within several clinical trials, the platform was introduced in phases to participating sites and QART study reviewers. RESULTS: The resulting QA platform, integrating RT analysis software installed at EORTC Headquarters, permits timely, secure, and fully digital central DICOM-RT based data review. Participating sites submit data through a standard secure upload webpage. Supplemental information is submitted in parallel through web-based forms. An internal quality check by the QART office verifies data consistency, formatting, and anonymization. QART reviewers have remote access through a terminal server. Reviewers evaluate submissions for protocol compliance through an online evaluation matrix. Comments are collected by the coordinating centre and institutions are informed of the results. CONCLUSIONS: This web-based central review platform facilitates rapid, extensive, and prospective QART review. This reduces the risk that trial outcomes are compromised through inadequate radiotherapy and facilitates correlation of results with clinical outcomes.
Resumo:
The sterol compositions of three oceanic jellyfish have been determined using gas chromatographic mass spectrometric techniques involving the use of two separate gas chromatographic column systems. The components in overlapping peaks have been identified by comparison of the mass spectra of peaks in the two column systems using subtractive techniques. A mid-water animal, Periphylla periphylla, was found to contain a very complex and unusual sterol profile including rare 5alpha-stanols, whereas two other oceanic jellyfish Pelagia noctiluca and Atolla wyvillei contained similar mixtures of delta5 sterols to those previously isolated from coastal species.
Resumo:
The 1:10,000 scale mapping of the southern part of the Aggtelek Plateau (Western Carpathians, Silica Nappe, NE Hungary) and the study of five sections revealed two Middle Triassic reef bodies. In the late Pelsonian the uniform Steinalm Platform was drowned and dissected due to the Reifling Event. A connection with the open sea was established, indicated by the appearance of gladigondolellid conodonts from the early Illyrian. Basins and highs were formed. In the NW part of the studied area lower - middle? Illyrian basinal carbonates were followed by a platform margin reef (early? - middle Illyrian; reef stage 1) developed on a morphological high. This is the oldest known Triassic platform margin reef within the Alpine-Carpathian region. The reef association is dominated by sphinctozoans and microproblematics. The fossils are characteristic of the Wetterstein - type reef communities. Differently from this in the SE part of the studied region a basin existed from the late Pelsonian until the early Ladinian. During the late Illyrian - early Ladinian, the reef prograded to the SE, and reef stage 2 was established. Meanwhile, on the NW part of the platform a lagoon was formed behind the reef. Based on our palaeontological study the stratigraphic range of Colospongia catenulata, Follicatena cautica, Solenolmia manon manon, Vesicocaulis oenipontanus must be extended down to the middle Illyrian. Synsedimentary tectonics were detected in the 1. Binodosus Subzone, 2. Trinodosus Zone - the most part of the Reitzi Zone, 3. Avisianum Subzone.
Resumo:
Morphogens of the Wnt protein family are the secreted lipoglycoprotein ligands which initiate several pathways heavily involved in the coordination of various developmental stages of organisms in the majority of animal species. Deregulation of these pathways in the adult leads to formation and sustaining of multiple types of cancer. The latter notion is reinforced by the fact that the very discovery of the first Wnt ligand was due to its role as the causative factor of carcinogenic transformation (Nusse and Varmus, 1982). Nowadays our knowledge on Wnt signaling has "moved with the times" and these pathways were identified to be often crucial for tumor formation, its interactions with the microenvironment, and promotion of the metastases (Huang and Du, 2008; Zerlin et al., 2008; Jessen, 2009). Thus the relevance of the pathway as the target for drug development has further increased in the light of modern paradigms of the complex cancer treatments which target also spreading and growth- promoting factors of tumors by specific and highly efficient substances (Pavet et al., 2010). Presently the field of the Wnt-targeting drug research is almost solely dominated by assays based on transcriptional activation induced by the signaling. This approach resulted in development of a number of promising substances (Lee et al., 2011). Despite its effectiveness, the method nevertheless suffers from several drawbacks. Among the major ones is the fact that this approach is prone to identify compounds targeting rather downstream effectors of the pathway, which are indiscriminately used by all the subtypes of the Wnt signaling. Additionally, proteins which are involved in several signaling cascades and not just the Wnt pathway turn out as targets of the new compounds. These issues increase risks of side effects due to off-target interactions and blockade of the pathway in healthy cells. In the present work we put forward a novel biochemical approach for drug development on the Wnt pathway. It targets Frizzleds (Fzs) - a family of 7-transmbembrane proteins which serve as receptors for Wnt ligands. They offer unique properties for the development of highly specific and effective drugs as they control all branches of the Wnt signaling. Recent advances in the understanding of the roles of heterotrimeric G proteins downstream from Fzs (Katanaev et al., 2005; Liu et al., 2005; Jernigan et al., 2010) suggest application of enzymatic properties of these effectors to monitor the receptor-mediated events. We have applied this knowledge in practice and established a specific and efficient method based on utilization of a novel high-throughput format of the GTP-binding assay to follow the activation of Fzs. This type of assay is a robust and well-established technology for the research and screenings on the GPCRs (Harrison and Traynor, 2003). The conventional method of detection involves the radioactively labeled non-hydrolysable GTP analog [35S]GTPyS. Its application in the large-scale screenings is however problematic which promoted development of the novel non-radioactive GTP analog GTP-Eu. The new molecule employs phenomenon of the time-resolved fluorescence to provide sensitivity comparable to the conventional radioactive substance. Initially GTP-Eu was tested only in one of many possible types of GTP-binding assays (Frang et al., 2003). In the present work we expand these limits by demonstrating the general comparability of the novel label with the radioactive method in various types of assays. We provide a biochemical characterization of GTP-Eu interactions with heterotrimeric and small GTPases and a comparative analysis of the behavior of the new label in the assays involving heterotrimeric G protein effectors. These developments in the GTP-binding assay were then applied to monitor G protein activation by the Fz receptors. The data obtained in mammalian cultured cell lines provides for the first time an unambiguous biochemical proof for direct coupling of Fzs with G proteins. The specificity of this interaction has been confirmed by the experiments with the antagonists of Fz and by the pertussis toxin-mediated deactivation. Additionally we have identified the specificity of Wnt3a towards several members of the Fz family and analyzed the properties of human Fz-1 which was found to be the receptor coupled to the Gi/o family of G proteins. Another process playing significant role in the functioning of every GPCR is endocytosis. This phenomenon can also be employed for drug screenings on GPCRs (Bickle, 2010). In the present work we have demonstrated that Drosophila Fz receptors are involved in an unusual for many GPCRs manifestation of the receptor-mediated internalization. Through combination of biochemical approaches and studies on Drosophila as the model organism we have shown that direct interactions of the Fzs and the α-subunit of the heterotrimeric G protein Go with the small GTPase Rab5 regulate internalization of the receptor in early endosomes. We provide data uncovering the decisive role of this self-promoted endocytosis in formation of a proper signaling output in the canonical as well as planar cell polarity (PCP) pathways regulated by Fz. The results of this work thus establish a platform for the high-throughput screening to identify substances active in the cancer-related Wnt pathways. This methodology has been adjusted and applied to provide the important insights in Fz functioning and will be instrumental for further investigations on the Wnt-mediated pathways.