205 resultados para Multidrug-resistant organisms

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genotyping and molecular characterization of drug resistance mechanisms in Mycobacterium leprae enables disease transmission and drug resistance trends to be monitored. In the present study, we performed genome-wide analysis of Airaku-3, a multidrug-resistant strain with an unknown mechanism of resistance to rifampicin. We identified 12 unique non-synonymous single-nucleotide polymorphisms (SNPs) including two in the transporter-encoding ctpC and ctpI genes. In addition, two SNPs were found that improve the resolution of SNP-based genotyping, particularly for Venezuelan and South East Asian strains of M. leprae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Daptomycin was tested in vitro and in rats with experimental endocarditis against the ampicillin-susceptible and vancomycin-susceptible Enterococcus faecalis JH2-2, the vancomycin-resistant (VanA type) mutant of strain JH2-2 (strain JH2-2/pIP819), and the ampicillin-resistant and vancomycin-resistant (VanB type) Enterococcus faecium D366. METHODS: Rats with catheter-induced aortic vegetations were treated with doses simulating intravenously kinetics in humans of daptomycin (6 mg/kg every 24 h), amoxicillin (2 g every 6 h), vancomycin (1 g every 12 h) or teicoplanin (12 mg/kg every 12 h). Treatment was started 16 h post-inoculation and continued for 2 days. RESULTS: MICs of daptomycin were 1, 1 and 2 mg/L, respectively, for strains JH2-2, JH2-2/pIP819 and D366. In time-kill studies, daptomycin showed rapid (within 2 h) bactericidal activity against all strains. Daptomycin was highly bound to rat serum proteins (89%). In the presence of 50% rat serum, simulating free concentrations, daptomycin killing was maintained but delayed (6-24 h). In vivo, daptomycin treatment resulted in 10 of 12 (83%), 9 of 11 (82%) and 11 of 12 (91%) culture-negative vegetations in rats infected with strains JH2-2, JH2-2/pIP819 and D366, respectively (P < 0.001 compared to controls). Daptomycin efficacy was comparable to that of amoxicillin and vancomycin for susceptible isolates. Daptomycin, however, was significantly (P < 0.05) more effective than teicoplanin against the glycopeptide-susceptible strain JH2-2 and superior to all comparators against resistant isolates. CONCLUSIONS: These results support the use of the newly proposed daptomycin dose of 6 mg/kg every 24 h for treatment of enterococcal infections in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The widespread incidence of enterococci resistant to ampicillin, vancomycin and aminoglycosides, the first-line anti-enterococcal antibiotics, has made the treatment of severe enterococcal infections difficult and alternatives should be explored. We investigated the activity of daptomycin combined with linezolid against three Enterococcus faecalis and four Enterococcus faecium strains resistant to standard drugs used for therapy. Minimum inhibitory concentrations (MICs) were determined by the broth dilution method. Drug interactions were assessed by the checkerboard and time-kill methods. Synergy was defined by a fractional inhibitory concentration index (FICI) of ≤0.5 or a ≥2 log10 CFU/mL killing at 24 h with the combination in comparison with killing by the most active single agent. Indifference was defined by a FICI > 0.5-4.0 or a 1-2 log10 CFU/mL killing compared with the most active single agent. MICs of daptomycin were 2-4 μg/mL for E. faecalis and 2-8 μg/mL for E. faecium. MICs of linezolid were 1-2 μg/mL for all bacteria. In the checkerboard assay, five isolates showed synergism (FICI < 0.5) and two showed indifference (FICIs of 0.53 and 2). Killing studies revealed synergy of daptomycin plus linezolid against four isolates (2.2-3.7 log10 CFU/mL kill) and indifference (1.1-1.6 log10 CFU/mL kill) for the other three strains. Antagonism was not observed. In conclusion, the combination of daptomycin and linezolid had a synergistic or indifferent effect against multidrug-resistant enterococci. Additional studies are needed to explore the potential of this combination for severe enterococcal infections when first-line antibiotic combinations cannot be used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ninety-six clinical isolates of Staphylococcus aureus from Nigeria were characterized phenotypically and genetically. Twelve multidrug-resistant methicillin (meticillin)-resistant S. aureus (MRSA) isolates carrying a new staphylococcal cassette chromosome mec element and a high proportion of Panton-Valentine leukocidin (PVL)-positive methicillin-susceptible S. aureus (MSSA) isolates were observed. The cooccurrence of multidrug-resistant MRSA and PVL-positive MSSA isolates entails the risk of emergence of a multidrug-resistant PVL-positive MRSA clone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antibiotic pipeline continues to diminish and the majority of the public remains unaware of this critical situation. The cause of the decline of antibiotic development is multifactorial and currently most ICUs are confronted with the challenge of multidrug-resistant organisms. Antimicrobial multidrug resistance is expanding all over the world, with extreme and pandrug resistance being increasingly encountered, especially in healthcare-associated infections in large highly specialized hospitals. Antibiotic stewardship for critically ill patients translated into the implementation of specific guidelines, largely promoted by the Surviving Sepsis Campaign, targeted at education to optimize choice, dosage, and duration of antibiotics in order to improve outcomes and reduce the development of resistance. Inappropriate antimicrobial therapy, meaning the selection of an antibiotic to which the causative pathogen is resistant, is a consistent predictor of poor outcomes in septic patients. Therefore, pharmacokinetically/pharmacodynamically optimized dosing regimens should be given to all patients empirically and, once the pathogen and susceptibility are known, local stewardship practices may be employed on the basis of clinical response to redefine an appropriate regimen for the patient. This review will focus on the most severely ill patients, for whom substantial progress in organ support along with diagnostic and therapeutic strategies markedly increased the risk of nosocomial infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antifungal therapy is a central component of patient management for acute and chronic mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal drug classes. Clinical management of fungal diseases is further compromised by the emergence of antifungal drug resistance, which eliminates available drug classes as treatment options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms refractory to several different classes of antifungal agents, especially among common Candida species. The mechanisms responsible are mostly shared by both resistant strains displaying inherently reduced susceptibility and those acquiring resistance during therapy. The molecular mechanisms include altered drug affinity and target abundance, reduced intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights into genetic factors regulating these mechanisms, as well as cellular factors important for stress adaptation, provide a foundation to better understand the emergence of antifungal drug resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

50 years ago, the introduction of penicillin, followed by many other antibacterial agents, represented an often underestimated medical revolution. Indeed, until that time, bacterial infections were the prime cause of mortality, especially in children and elderly patients. The discovery of numerous new substances and their development on an industrial scale gave us the illusion that bacterial infections were all but vanquished. However, the widespread and sometimes uncontrolled use of these agents has led to the selection of bacteria resistant to practically all available antibiotics. Bacteria utilize three main resistance strategies: (1) modification of their permeability, (2) modification of target, and (3) modification of the antibiotic. Bacteria modify their permeability either by becoming impermeable to antibiotics, or by actively excreting the drug accumulated in the cell. As an alternative, they can modify the structure of the antibiotic's molecular target--usually an essential metabolic enzyme of the bacterium--and thus escape the drug's toxic effect. Lastly, they can produce enzymes capable of modifying and directly inactivating antibiotics. In addition, bacteria have evolved extremely efficient genetic transfer systems capable of exchanging and accumulating resistance genes. Some pathogens, such as methicillin-resistant Staphylococcus aureus and multiresistant Mycobacterium tuberculosis, have become resistant to almost all available antibiotics and there are only one or two substances still active against such organisms. Antibiotics are very precious drugs which must be administered to patients who need them. On the other hand, the development of resistance must be kept under control by a better comprehension of its mechanisms and modes of transmission and by abiding by the fundamental rules of anti-infectious chemotherapy, i.e.: (1) choose the most efficient antibiotic according to clinical and local epidemiological data, (2) target the bacteria according to the microbiological data at hand, and (3) administer the antibiotic in an adequate dose which will leave the pathogen no chance to develop resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease (PR) and reverse transcriptase (RT) inhibitors may display impaired infectivity and replication capacity. The individual contributions of mutated HIV-1 PR and RT to infectivity, replication, RT activity, and protein maturation (herein referred to as "fitness") in recombinant viruses were investigated by separately cloning PR, RT, and PR-RT cassettes from drug-resistant mutant viral isolates into the wild-type NL4-3 background. Both mutant PR and RT contributed to measurable deficits in fitness of viral constructs. In peripheral blood mononuclear cells, replication rates (means +/- standard deviations) of RT recombinants were 72.5% +/- 27.3% and replication rates of PR recombinants were 60.5% +/- 33.6% of the rates of NL4-3. PR mutant deficits were enhanced in CEM T cells, with relative replication rates of PR recombinants decreasing to 15.8% +/- 23.5% of NL4-3 replication rates. Cloning of the cognate RT improved fitness of some PR mutant clones. For a multidrug-resistant virus transmitted through sexual contact, RT constructs displayed a marked infectivity and replication deficit and diminished packaging of Pol proteins (RT content in virions diminished by 56.3% +/- 10.7%, and integrase content diminished by 23.3% +/- 18.4%), a novel mechanism for a decreased-fitness phenotype. Despite the identified impairment of recombinant clones, fitness of two of the three drug-resistant isolates was comparable to that of wild-type, susceptible viruses, suggestive of extensive compensation by genomic regions away from PR and RT. Only limited reversion of mutated positions to wild-type amino acids was observed for the native isolates over 100 viral replication cycles in the absence of drug selective pressure. These data underscore the complex relationship between PR and RT adaptive changes and viral evolution in antiretroviral drug-resistant HIV-1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Anterior spinal infection (prevertebral abscess and/or discitis) after posterior instrumentation for vertebral fractures is a challenging complication, since a new implant may become necessary anteriorly, in a septic environment. Generally accepted management guidelines are yet to be established. The authors present a case of posterior instrumentation for fractures of T12 and L1, complicated after 9 months with an anterior infection (prevertebral abscess and discitis) with extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli). This case is unique in that the multi-resistant organism was isolated only after the second stage of infection treatment, which consisted of anterior débridement and anterior implantation of titanium cages and rods. In this particular case, infection was controlled despite implantation of multiple cages, screws and rods, and fusion was achieved, by means of intravenous antibiotic treatment for 12 months. At the latest follow-up, 24 months post surgery, there was no evidence of infection. This problem case may be helpful for surgeons confronted with spinal deformities secondary to infections with multi-resistant organisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: The recent increase in drug-resistant micro-organisms complicates the management of hospital-acquired bloodstream infections (HA-BSIs). We investigated the epidemiology of HA-BSI and evaluated the impact of drug resistance on outcomes of critically ill patients, controlling for patient characteristics and infection management. METHODS: A prospective, multicentre non-representative cohort study was conducted in 162 intensive care units (ICUs) in 24 countries. RESULTS: We included 1,156 patients [mean ± standard deviation (SD) age, 59.5 ± 17.7 years; 65 % males; mean ± SD Simplified Acute Physiology Score (SAPS) II score, 50 ± 17] with HA-BSIs, of which 76 % were ICU-acquired. Median time to diagnosis was 14 [interquartile range (IQR), 7-26] days after hospital admission. Polymicrobial infections accounted for 12 % of cases. Among monomicrobial infections, 58.3 % were gram-negative, 32.8 % gram-positive, 7.8 % fungal and 1.2 % due to strict anaerobes. Overall, 629 (47.8 %) isolates were multidrug-resistant (MDR), including 270 (20.5 %) extensively resistant (XDR), and 5 (0.4 %) pan-drug-resistant (PDR). Micro-organism distribution and MDR occurrence varied significantly (p < 0.001) by country. The 28-day all-cause fatality rate was 36 %. In the multivariable model including micro-organism, patient and centre variables, independent predictors of 28-day mortality included MDR isolate [odds ratio (OR), 1.49; 95 % confidence interval (95 %CI), 1.07-2.06], uncontrolled infection source (OR, 5.86; 95 %CI, 2.5-13.9) and timing to adequate treatment (before day 6 since blood culture collection versus never, OR, 0.38; 95 %CI, 0.23-0.63; since day 6 versus never, OR, 0.20; 95 %CI, 0.08-0.47). CONCLUSIONS: MDR and XDR bacteria (especially gram-negative) are common in HA-BSIs in critically ill patients and are associated with increased 28-day mortality. Intensified efforts to prevent HA-BSIs and to optimize their management through adequate source control and antibiotic therapy are needed to improve outcomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transmission of drug-resistant variants is influenced by several factors, including the prevalence of drug resistance in the population of HIV-1-infected patients, HIV-1 RNA levels and transmission by recently infected patients. In order to evaluate the impact of these factors on the transmission of drug-resistant variants, we have defined the population of potential transmitters and compared their resistance profiles to those of newly infected patients. Sequencing of pol gene was performed in 220 recently infected patients and in 373 chronically infected patients with HIV-1 RNA >1000 copies/ml. Minimal and maximal drug-resistance profiles of potential transmitters were estimated by weighting resistance profiles of chronically infected patients with estimates of the Swiss HIV-1-infected population, the prevalence of exposure to antiviral drugs and the proportion of infections attributed to primary HIV infections. The drug-resistance prevalence in recently infected patients was 10.5% (one class drug resistance: 9.1%; two classes: 1.4%; three classes: 0%). Phylogenetic analysis revealed significant clustering for 30% of recent infections. The drug-resistance prevalence in chronically infected patients was 72.4% (one class: 29%; two classes: 27.6%; three classes: 15.8%). After adjustment, the risk of transmission relative to wild-type was reduced both for one class drug resistance (minimal and maximal estimates: odds ratio: 0.39, P<0.001; and odds ratio: 0.55, P=0.011, respectively), and for two to three class drug resistance (odds ratios: 0.05 and 0.07, respectively, P<0.001). Neither sexual behaviour nor HIV-1 RNA levels explained the low transmission of drug-resistant variants. These data suggest that drug-resistant variants and in particular multidrug-resistant variants have a substantially reduced transmission capacity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus aureus (MRSA), both hospital-acquired and community-acquired, is a dangerous pathogen that is involved in an increasing number of serious infections with high risk for morbidity and mortality. Community-acquired MRSA strains have epidemic potential and can be particularly virulent. Vancomycin has been the standard hospital treatment for the past 40 years, but vancomycin-resistant isolates of S. aureus have emerged in the USA, and vancomycin-intermediate isolates are increasingly being reported worldwide. New antimicrobial agents with activity against multidrug-resistant S. aureus and other resistant pathogens are urgently needed. Despite great strides, further advances in our understanding of the molecular and biochemical mechanisms responsible for antimicrobial resistance are still required. Several agents have been recently approved for the treatment of serious Gram-positive infections, including linezolid, daptomycin, and tigecycline. The novel investigational cephalosporin, ceftobiprole, is one of the first penicillinase-resistant agents to target penicillin-binding protein 2a (or PBP2a), an acquired PBP with low beta-lactam-affinity that confers intrinsic beta-lactam resistance to S. aureus and other staphylococci. This mechanism of PBP binding, including inhibition of PBP2a, confers broad-spectrum activity against clinically important Gram-negative and Gram-positive pathogens, including MRSA. Phase III clinical trials comparing ceftobiprole with vancomycin alone and in combination with ceftazidime for the treatment of complicated skin and skin structure infections showed ceftobiprole to have efficacy similar to the efficacy of these comparators as evidenced by non-inferior clinical cure and microbiological eradication rates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Infectious keratitis after PRK remains a rare but potentially devastating complication. HISTORY AND SIGNS: Medical records of 3 male patients with infectious keratitis after uneventful PRK for myopia and astigmatism were reviewed retrospectively. PRK was performed using the Wavelight Allegretto excimer laser. Postoperative care included a bandage contact lens (BCL) for 5 days, topical antibiotics, ketorolac, and artificial tears. THERAPY AND OUTCOME: Keratitis presented 2 - 4 days postoperatively. In one case, each culture was negative (case 1), and was positive for Streptococcus pneumoniae (case 2) and Staphylococcus aureus (case 3). Final BSCVA (best spectacle corrected visual acuity) after intensive antibiotic treatment and removal of BCL were 1.0 (case 1), 0.9 (case 2) and 0.3 correctable to 0.8 with pinhole (case 3). CONCLUSIONS: Postoperative broad-spectrum antibiotics are mandatory after PRK to prevent infectious keratitis. However, resistant organisms are more and more common. The presence of a bandage soft contact lens after surgery is an unfavourable element that may increase risk of infection. Based on our case series, we suggest limiting soft contact lens wear during the two postoperative days even if the corneal ulceration is not healed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial factors may contribute to the global emergence and spread of drug-resistant tuberculosis (TB). Only a few studies have reported on the interactions between different bacterial factors. We studied drug-resistant Mycobacterium tuberculosis isolates from a nationwide study conducted from 2000 to 2008 in Switzerland. We determined quantitative drug resistance levels of first-line drugs by using Bactec MGIT-960 and drug resistance genotypes by sequencing the hot-spot regions of the relevant genes. We determined recent transmission by molecular methods and collected clinical data. Overall, we analyzed 158 isolates that were resistant to isoniazid, rifampin, or ethambutol, 48 (30.4%) of which were multidrug resistant. Among 154 isoniazid-resistant strains, katG mutations were associated with high-level and inhA promoter mutations with low-level drug resistance. Only katG(S315T) (65.6% of all isoniazid-resistant strains) and inhA promoter -15C/T (22.7%) were found in molecular clusters. M. tuberculosis lineage 2 (includes Beijing genotype) was associated with any drug resistance (adjusted odds ratio [OR], 3.0; 95% confidence interval [CI], 1.7 to 5.6; P < 0.0001). Lineage 1 was associated with inhA promoter -15C/T mutations (OR, 6.4; 95% CI, 2.0 to 20.7; P = 0.002). We found that the genetic strain background influences the level of isoniazid resistance conveyed by particular mutations (interaction tests of drug resistance mutations across all lineages; P < 0.0001). In conclusion, M. tuberculosis drug resistance mutations were associated with various levels of drug resistance and transmission, and M. tuberculosis lineages were associated with particular drug resistance-conferring mutations and phenotypic drug resistance. Our study also supports a role for epistatic interactions between different drug resistance mutations and strain genetic backgrounds in M. tuberculosis drug resistance.