118 resultados para Multidimensional Space
em Université de Lausanne, Switzerland
Resumo:
In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological parameters. However, their brute-force application becomes computationally prohibitive for highly detailed geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty is estimated from the exact responses that are computed only for one representative realization per cluster (the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are considered to estimate the uncertainty. We propose to use the information from the approximate responses for uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct an error model and correct the potential bias of the approximate model. Two error models are devised that both employ the difference between approximate and exact medoid solutions, but differ in the way medoid errors are interpolated to correct the whole set of realizations. The Local Error Model rests upon the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the Global Error Model employs a linear interpolation of all medoid errors regardless of the cluster to which the single realization belongs. These error models are evaluated for an idealized pollution problem in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm and are effective in correcting the bias of the estimate computed solely from the MsFV results. The framework presented here is not specific to the methods considered and can be applied to other combinations of approximate models and techniques to select a subset of realizations
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
We propose a multivariate approach to the study of geographic species distribution which does not require absence data. Building on Hutchinson's concept of the ecological niche, this factor analysis compares, in the multidimensional space of ecological variables, the distribution of the localities where the focal species was observed to a reference set describing the whole study area. The first factor extracted maximizes the marginality of the focal species, defined as the ecological distance between the species optimum and the mean habitat within the reference area. The other factors maximize the specialization of this focal species, defined as the ratio of the ecological variance in mean habitat to that observed for the focal species. Eigenvectors and eigenvalues are readily interpreted and can be used to build habitat-suitability maps. This approach is recommended in Situations where absence data are not available (many data banks), unreliable (most cryptic or rare species), or meaningless (invaders). We provide an illustration and validation of the method for the alpine ibex, a species reintroduced in Switzerland which presumably has not yet recolonized its entire range.
Resumo:
When individuals learn by trial-and-error, they perform randomly chosen actions and then reinforce those actions that led to a high payoff. However, individuals do not always have to physically perform an action in order to evaluate its consequences. Rather, they may be able to mentally simulate actions and their consequences without actually performing them. Such fictitious learners can select actions with high payoffs without making long chains of trial-and-error learning. Here, we analyze the evolution of an n-dimensional cultural trait (or artifact) by learning, in a payoff landscape with a single optimum. We derive the stochastic learning dynamics of the distance to the optimum in trait space when choice between alternative artifacts follows the standard logit choice rule. We show that for both trial-and-error and fictitious learners, the learning dynamics stabilize at an approximate distance of root n/(2 lambda(e)) away from the optimum, where lambda(e) is an effective learning performance parameter depending on the learning rule under scrutiny. Individual learners are thus unlikely to reach the optimum when traits are complex (n large), and so face a barrier to further improvement of the artifact. We show, however, that this barrier can be significantly reduced in a large population of learners performing payoff-biased social learning, in which case lambda(e) becomes proportional to population size. Overall, our results illustrate the effects of errors in learning, levels of cognition, and population size for the evolution of complex cultural traits. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
We have investigated the phenomenon of deprivation in contemporary Switzerland through the adoption of a multidimensional, dynamic approach. By applying Self Organizing Maps (SOM) to a set of 33 non-monetary indicators from the 2009 wave of the Swiss Household Panel (SHP), we identified 13 prototypical forms (or clusters) of well-being, financial vulnerability, psycho-physiological fragility and deprivation within a topological dimensional space. Then new data from the previous waves (2003 to 2008) were classified by the SOM model, making it possible to estimate the weight of the different clusters in time and reconstruct the dynamics of stability and mobility of individuals within the map. Looking at the transition probabilities between year t and year t+1, we observed that the paths of mobility which catalyze the largest number of observations are those connecting clusters that are adjacent on the topological space.
Resumo:
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.
Resumo:
This thesis explores the importance of literary New York City in the urban narratives of Edith Wharton and Anzia Yezierska. It specifically looks at the Empire City of the Progressive Period when the concept of the city was not only a new theme but also very much a typical American one which was as central to the American experience as had been the Western frontier. It could be argued, in fact, that the American city had become the new frontier where modern experiences like urbanization, industrialization, immigration, and also women's emancipation and suffrage, caused all kinds of sensations on the human scale from smoothly lived assimilation and acculturation to deeply felt alienation because of the constantly shifting urban landscape. The developing urban space made possible the emergence of new female literary protagonists like the working girl, the reformer, the prostitute, and the upper class lady dedicating her life to 'conspicuous consumption'. Industrialization opened up city space to female exploration: on the one hand, upper and middle class ladies ventured out of the home because of the many novel urban possibilities, and on the other, lower class and immigrant girls also left their domestic sphere to look for paid jobs outside the home. New York City at the time was not only considered the epicenter of the world at large, it was also a city of great extremes. Everything was constantly in flux: small brownstones made way for ever taller skyscrapers and huge waves of immigrants from Europe pushed native New Yorkers further uptown on the island, adding to the crowdedness and intensity of the urban experience. The city became a polarized urban space with Fifth Avenue representing one end of the spectrum and the Lower East Side the other. Questions of space and the urban home greatly mattered. It has been pointed out that the city setting functions as an ideal means for the display of human nature as well as social processes. Narrative representations of urban space, therefore, provide a similar canvas for a protagonist's journey and development. From widely diverging vantage points both Edith Wharton and Anzia Yezierska thus create a polarized city where domesticity is a primal concern. Looking at all of their New York narratives by close readings of exterior and interior city representations, this thesis shows how urban space greatly affects questions of identity, assimilation, and alienation in literary protagonists who cannot escape the influence of their respective urban settings. Edith Wharton's upper class "millionaire" heroines are framed and contained by the city interiors of "old" New York, making it impossible for them to truly participate in the urban landscape in order to develop outside of their 'Gilt Cages'. On the other side are Anzia Yezierska's struggling "immigrant" protagonists who, against all odds, never give up in their urban context of streets, rooftops, and stoops. Their New York City, while always challenging and perpetually changing, at least allows them perspectives of hope for a 'Promised Land' in the making. Central for both urban narrative approaches is the quest for a home as an architectural structure, a spiritual resting place, and a locus for identity forming. But just as the actual city embraces change, urban protagonists must embrace change also if they desire to find fulfillment and success. That this turns out to be much easier for Anzia Yezierska's driven immigrants rather than for Edith Wharton's well established native New Yorkers is a surprising conclusion to this urban theme.
Resumo:
The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.
Resumo:
Background: Chronic mountain sickness (CMS), which is characterised by hypoxemia, erythrocytosis and pulmonary hypertension, is a major public health problem in high-altitude dwellers. The only existing treatment is descent to low altitude, an option that for social reasons almost never exists. Sleep disordered breathing may represent an underlying mechanism. We recently found that in mountaineers increasing the respiratory dead space markedly improves sleep disordered breathing. The aim of the present study was to assess the effects of this procedure on sleep disordered breathing in patients with CMS. Methods: In 10 male Bolivian high-altitude dwellers (mean ± SD age, 59 ± 9 y) suffering from CMS (haemoglobin >20 g/L) full night sleep recordings (Embletta, RespMed) were obtained in La Paz (3600 m). In random order, one night was spent with a 500 ml increase in dead space through a custom designed full face mask and the other night without it. Exclusion criteria were: secondary erythrocytosis, smoking, drug intake, acute infection, cardio- pulmonary or neurologic disease and travelling to low altitude in the preceding 6 months. Results: The major new finding was that added dead space dramatically improved sleep disordered breathing in patients suffering from CMS. The apnea/hypopnea index decreased by >50% (from 34.5 ± 25.0 to 16.8 ± 14.9, P = 0.003), the oxygen desaturation index decreased from 46.2 ± 23.0 to 27.2 ± 20.0 (P = 0.0004) and hypopnea index from 28.8 ± 20.9 to 16.3 ± 14.0 (P = 0.01), whereas nocturnal oxygen saturation increased from 79.8 ± 3.6 to 80.9 ± 3.0% (P = 0.009). The procedure was easily accepted and well tolerated. Conclusion: Here, we show for the very first time that an increase in respiratory dead space through a fitted mask dramatically improves nocturnal breathing in high-altitude dwellers suffering from CMS. We speculate that when used in the long-term, this procedure will improve erythrocytosis and pulmonary hypertension and offer an inexpensive and easily implementable treatment for this major public health problem.
Resumo:
The human auditory system is comprised of specialized but interacting anatomic and functional pathways encoding object, spatial, and temporal information. We review how learning-induced plasticity manifests along these pathways and to what extent there are common mechanisms subserving such plasticity. A first series of experiments establishes a temporal hierarchy along which sounds of objects are discriminated along basic to fine-grained categorical boundaries and learned representations. A widespread network of temporal and (pre)frontal brain regions contributes to object discrimination via recursive processing. Learning-induced plasticity typically manifested as repetition suppression within a common set of brain regions. A second series considered how the temporal sequence of sound sources is represented. We show that lateralized responsiveness during the initial encoding phase of pairs of auditory spatial stimuli is critical for their accurate ordered perception. Finally, we consider how spatial representations are formed and modified through training-induced learning. A population-based model of spatial processing is supported wherein temporal and parietal structures interact in the encoding of relative and absolute spatial information over the initial ∼300ms post-stimulus onset. Collectively, these data provide insights into the functional organization of human audition and open directions for new developments in targeted diagnostic and neurorehabilitation strategies.
Resumo:
Water transport in wood is vital for the survival of trees. With synchrotron radiation X-ray tomographic microscopy (SRXTM), it has become possible to characterize and quantify the three-dimensional (3D) network formed by vessels that are responsible for longitudinal transport. In the present study, the spatial size dependence of vessels and the organization inside single growth rings in terms of vessel-induced porosity was studied by SRXTM. Network characteristics, such as connectivity, were deduced by digital image analysis from the processed tomographic data and related to known complex network topologies.
Resumo:
Real-world objects are often endowed with features that violate Gestalt principles. In our experiment, we examined the neural correlates of binding under conflict conditions in terms of the binding-by-synchronization hypothesis. We presented an ambiguous stimulus ("diamond illusion") to 12 observers. The display consisted of four oblique gratings drifting within circular apertures. Its interpretation fluctuates between bound ("diamond") and unbound (component gratings) percepts. To model a situation in which Gestalt-driven analysis contradicts the perceptually explicit bound interpretation, we modified the original diamond (OD) stimulus by speeding up one grating. Using OD and modified diamond (MD) stimuli, we managed to dissociate the neural correlates of Gestalt-related (OD vs. MD) and perception-related (bound vs. unbound) factors. Their interaction was expected to reveal the neural networks synchronized specifically in the conflict situation. The synchronization topography of EEG was analyzed with the multivariate S-estimator technique. We found that good Gestalt (OD vs. MD) was associated with a higher posterior synchronization in the beta-gamma band. The effect of perception manifested itself as reciprocal modulations over the posterior and anterior regions (theta/beta-gamma bands). Specifically, higher posterior and lower anterior synchronization supported the bound percept, and the opposite was true for the unbound percept. The interaction showed that binding under challenging perceptual conditions is sustained by enhanced parietal synchronization. We argue that this distributed pattern of synchronization relates to the processes of multistage integration ranging from early grouping operations in the visual areas to maintaining representations in the frontal networks of sensory memory.