47 resultados para Multi-modal information processing
em Université de Lausanne, Switzerland
Resumo:
How does the multi-sensory nature of stimuli influence information processing? Cognitive systems with limited selective attention can elucidate these processes. Six-year-olds, 11-year-olds and 20-year-olds engaged in a visual search task that required them to detect a pre-defined coloured shape under conditions of low or high visual perceptual load. On each trial, a peripheral distractor that could be either compatible or incompatible with the current target colour was presented either visually, auditorily or audiovisually. Unlike unimodal distractors, audiovisual distractors elicited reliable compatibility effects across the two levels of load in adults and in the older children, but high visual load significantly reduced distraction for all children, especially the youngest participants. This study provides the first demonstration that multi-sensory distraction has powerful effects on selective attention: Adults and older children alike allocate attention to potentially relevant information across multiple senses. However, poorer attentional resources can, paradoxically, shield the youngest children from the deleterious effects of multi-sensory distraction. Furthermore, we highlight how developmental research can enrich the understanding of distinct mechanisms controlling adult selective attention in multi-sensory environments.
Resumo:
Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.
Resumo:
The 2009-2010 Data Fusion Contest organized by the Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society was focused on the detection of flooded areas using multi-temporal and multi-modal images. Both high spatial resolution optical and synthetic aperture radar data were provided. The goal was not only to identify the best algorithms (in terms of accuracy), but also to investigate the further improvement derived from decision fusion. This paper presents the four awarded algorithms and the conclusions of the contest, investigating both supervised and unsupervised methods and the use of multi-modal data for flood detection. Interestingly, a simple unsupervised change detection method provided similar accuracy as supervised approaches, and a digital elevation model-based predictive method yielded a comparable projected change detection map without using post-event data.
Resumo:
Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI.
Resumo:
Working memory, commonly defined as the ability to hold mental representations on line transiently and to manipulate these representations, is known to be a core deficit in schizophrenia. The aim of the present study was to investigate the visuo-spatial component of the working memory in schizophrenia, and more precisely to what extent the dynamic visuo-spatial information processing is impaired in schizophrenia patients. For this purpose we used a computerized paradigm in which 29 patients with schizophrenia (DSMIV, Diagnostic Interview for Genetic Studies) and 29 age and sex matched control subjects (DIGS) had to memorize a plane moving across the computer screen and to identify the observed trajectory among 9 plots proposed together. Each trajectory could be seen max. 3 times if needed. The results showed no difference between schizophrenia patients and controls regarding the number of correct trajectory identified after the first presentation. However, when we determine the mean number of correct trajectories on the basis of 3 trials, we observed that schizophrenia patients are significantly less performant than controls (Mann-Whitney, p _ 0.002). These findings suggest that, although schizophrenia patients are able to memorize some dynamic trajectories as well as controls, they do not profit from the repetition of the trajectory presentation. These findings are congruent with the hypothesis that schizophrenia could induce an unbalance between local and global information processing: the patients may be able to focus on details of the trajectory which could allow them to find the right target (bottom-up processes), but may show difficulty to refer to previous experience in order to filter incoming information (top-down processes) and enhance their visuo-spatial working memory abilities.
Resumo:
High-frequency oscillations in the gamma-band reflect rhythmic synchronization of spike timing in active neural networks. The modulation of gamma oscillations is a widely established mechanism in a variety of neurobiological processes, yet its neurochemical basis is not fully understood. Modeling, in-vitro and in-vivo animal studies suggest that gamma oscillation properties depend on GABAergic inhibition. In humans, search for evidence linking total GABA concentration to gamma oscillations has led to promising -but also to partly diverging- observations. Here, we provide the first evidence of a direct relationship between the density of GABAA receptors and gamma oscillatory gamma responses in human primary visual cortex (V1). By combining Flumazenil-PET (to measure resting-levels of GABAA receptor density) and MEG (to measure visually-induced gamma oscillations), we found that GABAA receptor densities correlated positively with the frequency and negatively with amplitude of visually-induced gamma oscillations in V1. Our findings demonstrate that gamma-band response profiles of primary visual cortex across healthy individuals are shaped by GABAA-receptor-mediated inhibitory neurotransmission. These results bridge the gap with in-vitro and animal studies and may have future clinical implications given that altered GABAergic function, including dysregulation of GABAA receptors, has been related to psychiatric disorders including schizophrenia and depression.
Resumo:
In this article we propose a novel method for calculating cardiac 3-D strain. The method requires the acquisition of myocardial short-axis (SA) slices only and produces the 3-D strain tensor at every point within every pair of slices. Three-dimensional displacement is calculated from SA slices using zHARP which is then used for calculating the local displacement gradient and thus the local strain tensor. There are three main advantages of this method. First, the 3-D strain tensor is calculated for every pixel without interpolation; this is unprecedented in cardiac MR imaging. Second, this method is fast, in part because there is no need to acquire long-axis (LA) slices. Third, the method is accurate because the 3-D displacement components are acquired simultaneously and therefore reduces motion artifacts without the need for registration. This article presents the theory of computing 3-D strain from two slices using zHARP, the imaging protocol, and both phantom and in-vivo validation.
Resumo:
The analysis of multi-modal and multi-sensor images is nowadays of paramount importance for Earth Observation (EO) applications. There exist a variety of methods that aim at fusing the different sources of information to obtain a compact representation of such datasets. However, for change detection existing methods are often unable to deal with heterogeneous image sources and very few consider possible nonlinearities in the data. Additionally, the availability of labeled information is very limited in change detection applications. For these reasons, we present the use of a semi-supervised kernel-based feature extraction technique. It incorporates a manifold regularization accounting for the geometric distribution and jointly addressing the small sample problem. An exhaustive example using Landsat 5 data illustrates the potential of the method for multi-sensor change detection.
Resumo:
Traditionally, the ventral occipito-temporal (vOT) area, but not the superior parietal lobules (SPLs), is thought as belonging to the neural system of visual word recognition. However, some dyslexic children who exhibit a visual attention span disorder - i.e. poor multi-element parallel processing - further show reduced SPLs activation when engaged in visual multi-element categorization tasks. We investigated whether these parietal regions further contribute to letter-identity processing within strings. Adult skilled readers and dyslexic participants with a visual attention span disorder were administered a letter-string comparison task under fMRI. Dyslexic adults were less accurate than skilled readers to detect letter identity substitutions within strings. In skilled readers, letter identity differs related to enhanced activation of the left vOT. However, specific neural responses were further found in the superior and inferior parietal regions, including the SPLs bilaterally. Two brain regions that are specifically related to substituted letter detection, the left SPL and the left vOT, were less activated in dyslexic participants. These findings suggest that the left SPL, like the left vOT, may contribute to letter string processing.
Resumo:
Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.
Resumo:
Forensic science is generally defined as the application of science to address questions related to the law. Too often, this view restricts the contribution of science to one single process which eventually aims at bringing individuals to court while minimising risk of miscarriage of justice. In order to go beyond this paradigm, we propose to refocus the attention towards traces themselves, as remnants of a criminal activity, and their information content. We postulate that traces contribute effectively to a wide variety of other informational processes that support decision making inmany situations. In particular, they inform actors of new policing strategies who place the treatment of information and intelligence at the centre of their systems. This contribution of forensic science to these security oriented models is still not well identified and captured. In order to create the best condition for the development of forensic intelligence, we suggest a framework that connects forensic science to intelligence-led policing (part I). Crime scene attendance and processing can be envisaged within this view. This approach gives indications abouthowto structure knowledge used by crime scene examiners in their effective practice (part II).
Resumo:
Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.
Resumo:
Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains.
Resumo:
The key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Through a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.
Resumo:
Information processing in groups has long been seen as a cooperative process. In contrast with this assumption, group members were rarely found to behave cooperatively: They withhold unshared information and stick to initial incorrect decisions. In the present article, we examined how group members' cooperative and competitivemotives impact on group information processing and propose that information sharing and use in groups could be seen as strategic behavior. We reviewed the latest developments in the literature investigating different forms of strategic information processing and their underlying mechanisms. This review suggests that explicit cooperative goals are needed for effective group decision-making.