54 resultados para Multi-instance and multi-sample fusion
em Université de Lausanne, Switzerland
Resumo:
Canine distemper virus (CDV), a mobillivirus related to measles virus causes a chronic progressive demyelinating disease, associated with persistence of the virus in the central nervous system (CNS). CNS persistence of morbilliviruses has been associated with cell-to-cell spread, thereby limiting immune detection. The mechanism of cell-to-cell spread remains uncertain. In the present study we studied viral spread comparing a cytolytic (non-persistent) and a persistent CDV strain in cell cultures. Cytolytic CDV spread in a compact concentric manner with extensive cell fusion and destruction of the monolayer. Persistent CDV exhibited a heterogeneous cell-to-cell pattern of spread without cell fusion and 100-fold reduction of infectious viral titers in supernatants as compared to the cytolytic strain. Ultrastructurally, low infectious titers correlated with limited budding of persistent CDV as compared to the cytolytic strain, which shed large numbers of viral particles. The pattern of heterogeneous cell-to-cell viral spread can be explained by low production of infectious viral particles in only few areas of the cell membrane. In this way persistent CDV only spreads to a small proportion of the cells surrounding an infected one. Our studies suggest that both cell-to-cell spread and limited production of infectious virus are related to reduced expression of fusogenic complexes in the cell membrane. Such complexes consist of a synergistic configuration of the attachment (H) and fusion (F) proteins on the cell surface. F und H proteins exhibited a marked degree of colocalization in cytolytic CDV infection but not in persistent CDV as seen by confocal laser microscopy. In addition, analysis of CDV F protein expression using vaccinia constructs of both strains revealed an additional large fraction of uncleaved fusion protein in the persistent strain. This suggests that the paucity of active fusion complexes is due to restricted intracellular processing of the viral fusion protein.
Resumo:
In recent years, multi-atlas fusion methods have gainedsignificant attention in medical image segmentation. Inthis paper, we propose a general Markov Random Field(MRF) based framework that can perform edge-preservingsmoothing of the labels at the time of fusing the labelsitself. More specifically, we formulate the label fusionproblem with MRF-based neighborhood priors, as an energyminimization problem containing a unary data term and apairwise smoothness term. We present how the existingfusion methods like majority voting, global weightedvoting and local weighted voting methods can be reframedto profit from the proposed framework, for generatingmore accurate segmentations as well as more contiguoussegmentations by getting rid of holes and islands. Theproposed framework is evaluated for segmenting lymphnodes in 3D head and neck CT images. A comparison ofvarious fusion algorithms is also presented.
Resumo:
In fetal brain MRI, most of the high-resolution reconstruction algorithms rely on brain segmentation as a preprocessing step. Manual brain segmentation is however highly time-consuming and therefore not a realistic solution. In this work, we assess on a large dataset the performance of Multiple Atlas Fusion (MAF) strategies to automatically address this problem. Firstly, we show that MAF significantly increase the accuracy of brain segmentation as regards single-atlas strategy. Secondly, we show that MAF compares favorably with the most recent approach (Dice above 0.90). Finally, we show that MAF could in turn provide an enhancement in terms of reconstruction quality.
Resumo:
Les thérapies du cancer, comme la radiothérapie et la chimiothérapie, sont couramment utilisées mais ont de nombreux effets secondaires. Ces thérapies invasives pour le patient nécessitent d'être améliorées et de nombreuses avancées ont été faites afin d'adapter et de personnaliser le traitement du cancer. L'immunothérapie a pour but de renforcer le système immunitaire du patient et de le rediriger de manière spécifique contre la tumeur. Dans notre projet, nous activons les lymphocytes Invariant Natural Killer T (iNKT) afin de mettre en place une immunothérapie innovatrice contre le cancer. Les cellules iNKT sont une unique sous-population de lymphocytes T qui ont la particularité de réunir les propriétés de l'immunité innée ainsi qu'adaptative. En effet, les cellules iNKT expriment à leur surface des molécules présentes aussi sur les cellules tueuses NK, caractéristique de l'immunité innée, ainsi qu'un récepteur de cellules T (TCR) qui représente l'immunité adaptative. Les cellules iNKT reconnaissent avec leur TCR des antigènes présentés par la molécule CD1d. Les antigènes sont des protéines, des polysaccharides ou des lipides reconnus par les cellules du système immunitaire ou les anticorps pour engendrer une réponse immunitaire. Dans le cas des cellules iNKT, l'alpha-galactosylceramide (αGC) est un antigène lipidique fréquemment utilisé dans les études cliniques comme puissant activateur. Après l'activation des cellules iNKT avec l'αGC, celles-ci produisent abondamment et rapidement des cytokines. Ces cytokines sont des molécules agissant comme des signaux activateurs d'autres cellules du système immunitaire telles que les cellules NK et les lymphocytes T. Cependant, les cellules iNKT deviennent anergiques après un seul traitement avec l'αGC c'est à dire qu'elles ne peuvent plus être réactivées, ce qui limite leur utilisation dans l'immunothérapie du cancer. Dans notre groupe, Stirnemann et al ont publié une molécule recombinante innovante, composée de la molécule CD1d soluble et chargée avec le ligand αGC (αGC/sCD1d). Cette protéine est capable d'activer les cellules iNKT tout en évitant l'anergie. Dans le système immunitaire, les anticorps sont indispensables pour combattre une infection bactérienne ou virale. En effet, les anticorps ont la capacité de reconnaître et lier spécifiquement un antigène et permettent l'élimination de la cellule qui exprime cet antigène. Dans le domaine de l'immunothérapie, les anticorps sont utilisés afin de cibler des antigènes présentés seulement par la tumeur. Ce procédé permet de réduire efficacement les effets secondaires lors du traitement du cancer. Nous avons donc fusionné la protéine recombinante αGC/CD1d à un fragment d'anticorps qui reconnaît un antigène spécifique des cellules tumorales. Dans une étude préclinique, nous avons démontré que la protéine αGC/sCD1d avec un fragment d'anticorps dirigé contre la tumeur engendre une meilleure activation des cellules iNKT et entraîne un effet anti-tumeur prolongé. Cet effet anti-tumeur est augmenté comparé à une protéine αGC/CD1d qui ne cible pas la tumeur. Nous avons aussi montré que l'activation des cellules iNKT avec la protéine αGC/sCD1d-anti-tumeur améliore l'effet anti- tumoral d'un vaccin pour le cancer. Lors d'expériences in vitro, la protéine αGC/sCD1d-anti- tumeur permet aussi d'activer les cellules humaines iNKT et ainsi tuer spécifiquement les cellules tumorales humaines. La protéine αGC/sCD1d-anti-tumeur représente une alternative thérapeutique prometteuse dans l'immunothérapie du cancer. - Les cellules Invariant Natural Killer T (iNKT), dont les effets anti-tumoraux ont été démontrés, sont de puissants activateurs des cellules Natural Killer (NK), des cellules dendritiques (DC) et des lymphocytes T. Cependant, une seule injection du ligand de haute affinité alpha-galactosylceramide (αGC) n'induit une forte activation des cellules iNKT que durant une courte période. Celle-ci est alors suivie d'une longue phase d'anergie, limitant ainsi leur utilisation pour la thérapie. Comme alternative prometteuse, nous avons montré que des injections répétées d'αGC chargé sur une protéine recombinante de CD1d soluble (αGC/sCD1d) chez la souris entraînent une activation prolongée des cellules iNKT, associée à une production continue de cytokine. De plus, le maintien de la réactivité des cellules iNKT permet de prolonger l'activité anti-tumorale lorsque la protéine αGC/sCD1d est fusionnée à un fragment d'anticorps (scFv) dirigé contre la tumeur. L'inhibition de la croissance tumorale n'est optimale que lorsque les souris sont traitées avec la protéine αGC/sCD1d-scFv ciblant la tumeur, la protéine αGC/sCD1d-scFv non-appropriée étant moins efficace. Dans le système humain, les protéines recombinantes αGC/sCD1d-anti-HER2 et anti-CEA sont capables d'activer et de faire proliférer des cellules iNKT à partir de PBMCs issues de donneurs sains. De plus, la protéine αGC/sCD1d-scFv a la capacité d'activer directement des clones iNKT humains en l'absence de cellules présentatrices d'antigènes (CPA), contrairement au ligand αGC libre. Mais surtout, la lyse des cellules tumorales par les iNKT humaines n'est obtenue que lorsqu'elles sont incubées avec la protéine αGC/sCD1d-scFv anti- tumeur. En outre, la redirection de la cytotoxicité des cellules iNKT vers la tumeur est supérieure à celle obtenue avec une stimulation par des CPA chargées avec l'αGC. Afin d'augmenter les effets anti-tumoraux, nous avons exploité la capacité des cellules iNKT à activer l'immunité adaptive. Pour ce faire, nous avons combiné l'immunothérapie NKT/CD1d avec un vaccin anti-tumoral composé d'un peptide OVA. Des effets synergiques ont été obtenus lorsque les traitements avec la protéine αGC/sCD1d-anti-HER2 étaient associés avec le CpG ODN comme adjuvant pour la vaccination avec le peptide OVA. Ces effets ont été observés à travers l'activation de nombreux lymphocytes T CD8+ spécifique de la tumeur, ainsi que par la forte expansion des cellules NK. Les réponses, innée et adaptive, élevées après le traitement avec la protéine αGC/sCD1d-anti-HER2 combinée au vaccin OVA/CpG ODN étaient associées à un fort ralentissement de la croissance des tumeurs B16- OVA-HER2. Cet effet anti-tumoral corrèle avec l'enrichissement des lymphocytes T CD8+ spécifiques observé à la tumeur. Afin d'étendre l'application des protéines αGC/sCD1d et d'améliorer leur efficacité, nous avons développé des fusions CD1d alternatives. Premièrement, une protéine αGC/sCD1d dimérique, qui permet d'augmenter l'avidité de la molécule CD1d pour les cellules iNKT. Dans un deuxième temps, nous avons fusionné la protéine αGC/sCD1d avec un scFv dirigé contre le récepteur 3 du facteur de croissance pour l'endothélium vasculaire (VEGFR-3), afin de cibler l'environnement de la tumeur. Dans l'ensemble, ces résultats démontrent que la thérapie médiée par la protéine recombinante αGC/sCD1d-scFv est une approche prometteuse pour rediriger l'immunité innée et adaptive vers le site tumoral. - Invariant Natural Killer T cells (iNKT) are potent activators of Natural Killer (NK), dendritic cells (DC) and T lymphocytes, and their anti-tumor activities have been well demonstrated. However, a single injection of the high affinity CD1d ligand alpha-galactosylceramide (αGC) leads to a strong but short-lived iNKT cell activation followed by a phase of long-term anergy, limiting the therapeutic use of this ligand. As a promising alternative, we have demonstrated that when αGC is loaded on recombinant soluble CD1d molecules (αGC/sCD1d), repeated injections in mice led to the sustained iNKT cell activation associated with continued cytokine secretion. Importantly, the retained reactivity of iNKT cell led to prolonged antitumor activity when the αGC/sCD1d was fused to an anti-tumor scFv fragments. Optimal inhibition of tumor growth was obtained only when mice were treated with the tumor-targeted αGC/CD1d-scFv fusion, whereas the irrelevant αGC/CD1d-scFv fusion was less efficient. When tested in a human system, the recombinant αGC/sCD1d-anti-HER2 and -anti-CEA fusion proteins were able to expand iNKT cells from PBMCs of healthy donors. Furthermore, the αGC/sCD1d-scFv fusion had the capacity to directly activate human iNKT cells clones without the presence of antigen-presenting cells (APCs), in contrast to the free αGC ligand. Most importantly, tumor cell killing by human iNKT cells was obtained only when co- incubated with the tumor targeted sCD1d-antitumor scFv, and their direct tumor cytotoxicity was superior to the bystander killing obtained with αGC-loaded APCs stimulation. To further enhance the anti-tumor effects, we exploited the ability of iNKT cells to transactivate the adaptive immunity, by combining the NKT/CD1d immunotherapy with a peptide cancer vaccine. Interestingly, synergistic effects were obtained when the αGC/sCD1d- anti-HER2 fusion treatment was combined with CpG ODN as adjuvant for the OVA peptide vaccine, as seen by higher numbers of activated antigen-specific CD8 T cells and NK cells, as compared to each regimen alone. The increased innate and adaptive immune responses upon combined tumor targeted sCD1d-scFv treatment and OVA/CpG vaccine were associated with a strong delay in B16-OVA-HER2 melanoma tumor growth, which correlated with an enrichment of antigen-specific CD8 cells at the tumor site. In order to extend the application of the CD1d fusion, we designed alternative CD1d fusion proteins. First, a dimeric αGC/sCD1d-Fc fusion, which permits to augment the avidity of the CD1d for iNKT cells and second, an αGC/sCD1d fused to an anti vascular endothelial growth factor receptor-3 (VEGFR-3) scFv, in order to target tumor stroma environment. Altogether, these results demonstrate that the iNKT-mediated immunotherapy via recombinant αGC/sCD1d-scFv fusion is a promising approach to redirect the innate and adaptive antitumor immune response to the tumor site.
Resumo:
BackgroundPulmonary Langerhans cell histiocytosis (PLCH) is a rare disorder characterised by granulomatous proliferation of CD1a-positive histiocytes forming granulomas within lung parenchyma, in strong association with tobacco smoking, and which may result in chronic respiratory failure. Smoking cessation is considered to be critical in management, but has variable effects on outcome. No drug therapy has been validated. Cladribine (chlorodeoxyadenosine, 2-CDA) down-regulates histiocyte proliferation and has been successful in curbing multi-system Langerhans cell histiocytosis and isolated PLCH.Methods and patientsWe retrospectively studied 5 patients (aged 37¿55 years, 3 females) with PLCH who received 3 to 4 courses of cladribine therapy as a single agent (0.1 mg/kg per day for 5 consecutive days at monthly intervals). One patient was treated twice because of relapse at 1 year. Progressive pulmonary disease with obstructive ventilatory pattern despite smoking cessation and/or corticosteroid therapy were indications for treatment. Patients were administered oral trimethoprim/sulfamethoxazole and valaciclovir to prevent opportunistic infections. They gave written consent to receive off-label cladribine in the absence of validated treatment.ResultsFunctional class dyspnea improved with cladribine therapy in 4 out of 5 cases, and forced expiratory volume in 1 second (FEV1) increased in all cases by a mean of 387 ml (100¿920 ml), contrasting with a steady decline prior to treatment. Chest high-resolution computed tomography (HRCT) features improved with cladribine therapy in 4 patients. Hemodynamic improvement was observed in 1 patient with pre-capillary pulmonary hypertension. The results suggested a greater treatment effect in subjects with nodular lung lesions and/or thick-walled cysts on chest HRCT, with diffuse hypermetabolism of lung lesions on positron emission tomography (PET)-scan, and with progressive disease despite smoking cessation. Infectious pneumonia developed in 1 patient, with later grade 4 neutrocytopenia but without infection.DiscussionData interpretation was limited by the retrospective, uncontrolled study design and small sample size.ConclusionCladribine as a single agent may be effective therapy in patients with progressive PLCH.
Resumo:
Introduction: Primary bone sarcomas around the ankle are rare. Due to the proximity of neurovascular structures and limited soft tissue reserves, limb salvage is often not possible. Case report: A 19 yo male presented with pain and a progressive swelling of his ankle. X-rays revealed cortical erosions and an extensive periosteal reaction (sunburst) of the distal fibula. MRI showed a large mass of the fibula invading adjacent soft tissue. The lesion appeared close to the ankle joint, but with the articular cartilage as a barrier and without joint effusion. Core-needle biopsy revealed a high-grade chondroblastic osteosarcoma. No metastases were detected. After presentation at our multidisciplinary sarcoma board, the patient was subjected to neo-adjuvant chemotherapy (AOST 03-331). Without any sign of intra-articular contamination of the ankle joint, surgical treatment consisted of wide resection of the lateral malleolus including a large skin patch, the distal third of the fibula, the lateral surfaces of the tibia and talus as well as the insertion of the lateral ligament on the calcaneus. The distal parts of the anterior, peroneal, and posterior muscular compartments were resected en bloc with the tumor. The defect was reconstructed with tibio-talar and talo-calcanear fusion, bony allograft and a plate. Soft-tissue coverage was achieved with a free fascio-cutaneous flap from the controlateral thigh. Histological analysis revealed clear margins and 50% of tumor necrosis. The oncologic treatment was completed with adjuvant chemotherapy. Conclusion: Wide resection and reconstruction of the lateral malleolus is technically demanding but possible in selected cases. Despite some important functional loss, limb salvage is superior to an amputation.
Resumo:
Rhabdomyosarcomas (RMS) are the most frequent soft-tissue sarcoma in children and characteristically show features of developing skeletal muscle. The alveolar subtype is frequently associated with a PAX3-FOXO1 fusion protein that is known to contribute to the undifferentiated myogenic phenotype of RMS cells. Histone methylation of lysine residues controls developmental processes in both normal and malignant cell contexts. Here we show that JARID2, which encodes a protein known to recruit various complexes with histone-methylating activity to their target genes, is significantly overexpressed in RMS with PAX3-FOXO1 compared with the fusion gene-negative RMS (t-test; P < 0.0001). Multivariate analyses showed that higher JARID2 levels are also associated with metastases at diagnosis, independent of fusion gene status and RMS subtype (n = 120; P = 0.039). JARID2 levels were altered by silencing or overexpressing PAX3-FOXO1 in RMS cell lines with and without the fusion gene, respectively. Consistent with this, we demonstrated that JARID2 is a direct transcriptional target of the PAX3-FOXO1 fusion protein. Silencing JARID2 resulted in reduced cell proliferation coupled with myogenic differentiation, including increased expression of Myogenin (MYOG) and Myosin Light Chain (MYL1) in RMS cell lines representative of both the alveolar and embryonal subtypes. Induced myogenic differentiation was associated with a decrease in JARID2 levels and this phenotype could be rescued by overexpressing JARID2. Furthermore, we that showed JARID2 binds to and alters the methylation status of histone H3 lysine 27 in the promoter regions of MYOG and MYL1 and that the interaction of JARID2 at these promoters is dependent on EED, a core component of the polycomb repressive complex 2 (PRC2). Therefore, JARID2 is a downstream effector of PAX3-FOXO1 that maintains an undifferentiated myogenic phenotype that is characteristic of RMS. JARID2 and other components of PRC2 may represent novel therapeutic targets for treating RMS patients.
Resumo:
Postmortem imaging consists in the non-invasive examination of bodies using medical imaging techniques. However, gas volume quantification and the interpretation of the gas collection results from cadavers remain difficult. We used whole-body postmortem multi-detector computed tomography (MDCT) followed by a full autopsy or external examination to detect the gaseous volumes in bodies. Gases were sampled from cardiac cavities, and the sample compositions were analyzed by headspace gas chromatography-mass spectrometry/thermal conductivity detection (HS-GC-MS/TCD). Three categories were defined according to the presumed origin of the gas: alteration/putrefaction, high-magnitude vital gas embolism (e.g., from scuba diving accident) and gas embolism of lower magnitude (e.g., following a traumatic injury). Cadaveric alteration gas was diagnosed even if only one gas from among hydrogen, hydrogen sulfide or methane was detected. In alteration cases, the carbon dioxide/nitrogen ratio was often >0.2, except in the case of advanced alteration, when methane presence was the best indicator. In the gas embolism cases (vital or not), hydrogen, hydrogen sulfide and methane were absent. Moreover, with high-magnitude vital gas embolisms, carbon dioxide content was >20%, and the carbon dioxide/nitrogen ratio was >0.2. With gas embolisms of lower magnitude (gas presence consecutive to a traumatic injury), carbon dioxide content was <20% and the carbon dioxide/nitrogen ratio was often <0.2. We found that gas analysis provided useful assistance to the postmortem imaging diagnosis of causes of death. Based on the quantifications of gaseous cardiac samples, reliable indicators were determined to document causes of death. MDCT examination of the body must be performed as quickly as possible, as does gas sampling, to avoid generating any artifactual alteration gases. Because of cardiac gas composition analysis, it is possible to distinguish alteration gases and gas embolisms of different magnitudes.
Resumo:
DNA is nowadays swabbed routinely to investigate serious and volume crimes, but research remains scarce when it comes to determining the criteria that may impact the success rate of DNA swabs taken on different surfaces and situations. To investigate these criteria in fully operational conditions, DNA analysis results of 4772 swabs taken by the forensic unit of a police department in Western Switzerland over a 2.5-year period (2012-2014) in volume crime cases were considered. A representative and random sample of 1236 swab analyses was extensively examined and codified, describing several criteria such as whether the swabbing was performed at the scene or in the lab, the zone of the scene where it was performed, the kind of object or surface that was swabbed, whether the target specimen was a touch surface or a biological fluid, and whether the swab targeted a single surface or combined different surfaces. The impact of each criterion and of their combination was assessed in regard to the success rate of DNA analysis, measured through the quality of the resulting profile, and whether the profile resulted in a hit in the national database or not. Results show that some situations - such as swabs taken on door and window handles for instance - have a higher success rate than average swabs. Conversely, other situations lead to a marked decrease in the success rate, which should discourage further analyses of such swabs. Results also confirm that targeting a DNA swab on a single surface is preferable to swabbing different surfaces with the intent to aggregate cells deposited by the offender. Such results assist in predicting the chance that the analysis of a swab taken in a given situation will lead to a positive result. The study could therefore inform an evidence-based approach to decision-making at the crime scene (what to swab or not) and at the triage step (what to analyse or not), contributing thus to save resource and increase the efficiency of forensic science efforts.
Resumo:
BACKGROUND: An LC-MS/MS method has been developed for the simultaneous quantification of P-glycoprotein (P-gp) and cytochrome P450 (CYP) probe substrates and their Phase I metabolites in DBS and plasma. P-gp (fexofenadine) and CYP-specific substrates (caffeine for CYP1A2, bupropion for CYP2B6, flurbiprofen for CYP2C9, omeprazole for CYP2C19, dextromethorphan for CYP2D6 and midazolam for CYP3A4) and their metabolites were extracted from DBS (10 µl) using methanol. Analytes were separated on a reversed-phase LC column followed by SRM detection within a 6 min run time. RESULTS: The method was fully validated over the expected clinical concentration range for all substances tested, in both DBS and plasma. The method has been successfully applied to a PK study where healthy male volunteers received a low dose cocktail of the here described P-gp and CYP probes. Good correlation was observed between capillary DBS and venous plasma drug concentrations. CONCLUSION: Due to its low-invasiveness, simple sample collection and minimal sample preparation, DBS represents a suitable method to simultaneously monitor in vivo activities of P-gp and CYP.
Resumo:
Tobacco consumption is a global epidemic responsible for a vast burden of disease. With pharmacological properties sought-after by consumers and responsible for addiction issues, nicotine is the main reason of this phenomenon. Accordingly, smokeless tobacco products are of growing popularity in sport owing to potential performance enhancing properties and absence of adverse effects on the respiratory system. Nevertheless, nicotine does not appear on the 2011 World Anti-Doping Agency (WADA) Prohibited List or Monitoring Program by lack of a comprehensive large-scale prevalence survey. Thus, this work describes a one-year monitoring study on urine specimens from professional athletes of different disciplines covering 2010 and 2011. A method for the detection and quantification of nicotine, its major metabolites (cotinine, trans-3-hydroxycotinine, nicotine-N'-oxide and cotinine-N-oxide) and minor tobacco alkaloids (anabasine, anatabine and nornicotine) was developed, relying on ultra-high pressure liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-TQ-MS/MS). A simple and fast dilute-and-shoot sample treatment was performed, followed by hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) operated in positive electrospray ionization (ESI) mode with multiple reaction monitoring (MRM) data acquisition. After method validation, assessing the prevalence of nicotine consumption in sport involved analysis of 2185 urine samples, accounting for 43 different sports. Concentrations distribution of major nicotine metabolites, minor nicotine metabolites and tobacco alkaloids ranged from 10 (LLOQ) to 32,223, 6670 and 538 ng/mL, respectively. Compounds of interest were detected in trace levels in 23.0% of urine specimens, with concentration levels corresponding to an exposure within the last three days for 18.3% of samples. Likewise, hypothesizing conservative concentration limits for active nicotine consumption prior and/or during sport practice (50 ng/mL for nicotine, cotinine and trans-3-hydroxycotinine and 25 ng/mL for nicotine-N'-oxide, cotinine-N-oxide, anabasine, anatabine and nornicotine) revealed a prevalence of 15.3% amongst athletes. While this number may appear lower than the worldwide smoking prevalence of around 25%, focusing the study on selected sports highlighted more alarming findings. Indeed, active nicotine consumption in ice hockey, skiing, biathlon, bobsleigh, skating, football, basketball, volleyball, rugby, American football, wrestling and gymnastics was found to range between 19.0 and 55.6%. Therefore, considering the adverse effects of smoking on the respiratory tract and numerous health threats detrimental to sport practice at top level, likelihood of smokeless tobacco consumption for performance enhancement is greatly supported.