43 resultados para Multi-Equation Income Model
em Université de Lausanne, Switzerland
Resumo:
The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.
Resumo:
This study aims to design a wearable system for kinetics measurement of multi-segment foot joints in long-distance walking and to investigate its suitability for clinical evaluations. The wearable system consisted of inertial sensors (3D gyroscopes and 3D accelerometers) on toes, forefoot, hindfoot, and shank, and a plantar pressure insole. After calibration in a laboratory, 10 healthy elderly subjects and 12 patients with ankle osteoarthritis walked 50m twice wearing this system. Using inverse dynamics, 3D forces, moments, and power were calculated in the joint sections among toes, forefoot, hindfoot, and shank. Compared to those we previously estimated for a one-segment foot model, the sagittal and transverse moments and power in the ankle joint, as measured via multi-segment foot model, showed a normalized RMS difference of less than 11%, 14%, and 13%, respectively, for healthy subjects, and 13%, 15%, and 14%, for patients. Similar to our previous study, the coronal moments were not analyzed. Maxima-minima values of anterior-posterior and vertical force, sagittal moment, and power in shank-hindfoot and hindfoot-forefoot joints were significantly different between patients and healthy subjects. Except for power, the inter-subject repeatability of these parameters was CMC>0.90 for healthy subjects and CMC>0.70 for patients. Repeatability of these parameters was lower for the forefoot-toes joint. The proposed measurement system estimated multi-segment foot joints kinetics with acceptable repeatability but showed difference, compared to those previously estimated for the one-segment foot model. These parameters also could distinguish patients from healthy subjects. Thus, this system is suggested for outcome evaluations of foot treatments.
Resumo:
In many practical applications the state of field soils is monitored by recording the evolution of temperature and soil moisture at discrete depths. We theoretically investigate the systematic errors that arise when mass and energy balances are computed directly from these measurements. We show that, even with no measurement or model errors, large residuals might result when finite difference approximations are used to compute fluxes and storage term. To calculate the limits set by the use of spatially discrete measurements on the accuracy of balance closure, we derive an analytical solution to estimate the residual on the basis of the two key parameters: the penetration depth and the distance between the measurements. When the thickness of the control layer for which the balance is computed is comparable to the penetration depth of the forcing (which depends on the thermal diffusivity and on the forcing period) large residuals arise. The residual is also very sensitive to the distance between the measurements, which requires accurately controlling the position of the sensors in field experiments. We also demonstrate that, for the same experimental setup, mass residuals are sensitively larger than the energy residuals due to the nonlinearity of the moisture transport equation. Our analysis suggests that a careful assessment of the systematic mass error introduced by the use of spatially discrete data is required before using fluxes and residuals computed directly from field measurements.
Resumo:
Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (G(brain)) as function of plasma glucose (G(plasma)) can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant K(t), apparent maximum rate constant T(max), glucose consumption rate CMR(glc), and the iso-inhibition constant K(ii) that suggests G(brain) as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where G(brain) was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by K(t) ranging from 1.5 to 3.5 mM, T(max)/CMR(glc) from 4.6 to 5.6, and K(ii) from 51 to 149 mM. It was noteworthy that K(t) was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by G(brain), predicting that G(brain) eventually approaches a maximum concentration. However, since K(ii) largely exceeds G(plasma), iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.
Resumo:
Empirical literature on the analysis of the efficiency of measures for reducing persistent government deficits has mainly focused on the direct explanation of deficit. By contrast, this paper aims at modeling government revenue and expenditure within a simultaneous framework and deriving the fiscal balance (surplus or deficit) equation as the difference between the two variables. This setting enables one to not only judge how relevant the explanatory variables are in explaining the fiscal balance but also understand their impact on revenue and/or expenditure. Our empirical results, obtained by using a panel data set on Swiss Cantons for the period 1980-2002, confirm the relevance of the approach followed here, by providing unambiguous evidence of a simultaneous relationship between revenue and expenditure. They also reveal strong dynamic components in revenue, expenditure, and fiscal balance. Among the significant determinants of public fiscal balance we not only find the usual business cycle elements, but also and more importantly institutional factors such as the number of administrative units, and the ease with which people can resort to political (direct democracy) instruments, such as public initiatives and referendum.
Resumo:
Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.
Resumo:
In this study we propose an evaluation of the angular effects altering the spectral response of the land-cover over multi-angle remote sensing image acquisitions. The shift in the statistical distribution of the pixels observed in an in-track sequence of WorldView-2 images is analyzed by means of a kernel-based measure of distance between probability distributions. Afterwards, the portability of supervised classifiers across the sequence is investigated by looking at the evolution of the classification accuracy with respect to the changing observation angle. In this context, the efficiency of various physically and statistically based preprocessing methods in obtaining angle-invariant data spaces is compared and possible synergies are discussed.
Resumo:
We analysed the relationship between changes in land cover patterns and the Eurasian otter occurrence over the course of about 20 years (1985-2006) using multi-temporal Species Distribution Models (SDMs). The study area includes five river catchments covering most of the otter's Italian range. Land cover and topographic data were used as proxies of the ecological requirements of the otter within a 300-m buffer around river courses. We used species presence, pseudo-absence data, and environmental predictors to build past (1985) and current (2006) SDMs by applying an ensemble procedure through the BIOMOD modelling package. The performance of each model was evaluated by measuring the area under the curve (AUC) of the receiver-operating characteristic (ROC). Multi-temporal analyses of species distribution and land cover maps were performed by comparing the maps produced for 1985 and 2006. The ensemble procedure provided a good overall modelling accuracy, revealing that elevation and slope affected the otter's distribution in the past; in contrast, land cover predictors, such as cultivations and forests, were more important in the present period. During the transition period, 20.5% of the area became suitable, with 76% of the new otter presence data being located in these newly available areas. The multi-temporal analysis suggested that the quality of otter habitat improved in the last 20 years owing to the expansion of forests and to the reduction of cultivated fields in riparian belts. The evidence presented here stresses the great potential of riverine habitat restoration and environmental management for the future expansion of the otter in Italy
Resumo:
Within Data Envelopment Analysis, several alternative models allow for an environmental adjustment. The majority of them deliver divergent results. Decision makers face the difficult task of selecting the most suitable model. This study is performed to overcome this difficulty. By doing so, it fills a research gap. First, a two-step web-based survey is conducted. It aims (1) to identify the selection criteria, (2) to prioritize and weight the selection criteria with respect to the goal of selecting the most suitable model and (3) to collect the preferences about which model is preferable to fulfil each selection criterion. Second, Analytic Hierarchy Process is used to quantify the preferences expressed in the survey. Results show that the understandability, the applicability and the acceptability of the alternative models are valid selection criteria. The selection of the most suitable model depends on the preferences of the decision makers with regards to these criteria.
Resumo:
Per definition, alcohol expectancies (after alcohol I expect X), and drinking motives (I drink to achieve X) are conceptually distinct constructs. Theorists have argued that motives mediate the association between expectancies and drinking outcomes. Yet, given the use of different instruments, do these constructs remain distinct when assessment items are matched? The present study tested to what extent motives mediated the link between expectancies and alcohol outcomes when identical items were used, first as expectancies and then as motives. A linear structural equation model was estimated based on a national representative sample of 5,779 alcohol-using students in Switzerland (mean age = 15.2 years). The results showed that expectancies explained up to 38% of the variance in motives. Together with motives, they explained up to 48% of the variance in alcohol outcomes (volume, 5+ drinking, and problems). In 10 of 12 outcomes, there was a significant mediated effect that was often higher than the direct expectancy effect. For coping, the expectancy effect was close to zero, indicating the strongest form of mediation. In only one case (conformity and 5+ drinking), there was a direct expectancy effect but no mediation. To conclude, the study demonstrates that motives are distinct from expectancies even when identical items are used. Motives are more proximally related to different alcohol outcomes, often mediating the effects of expectancies. Consequently, the effectiveness of interventions, particularly those aimed at coping drinkers, should be improved through a shift in focus from expectancies to drinking motives.