53 resultados para Movement of the trunk
em Université de Lausanne, Switzerland
Resumo:
A new ambulatory technique for qualitative and quantitative movement analysis of the humerus is presented. 3D gyroscopes attached on the humerus were used to recognize the movement of the arm and to classify it as flexion, abduction and internal/external rotations. The method was first validated in a laboratory setting and then tested on 31 healthy volunteer subjects while carrying the ambulatory system during 8 h of their daily life. For each recording, the periods of sitting, standing and walking during daily activity were detected using an inertial sensor attached on the chest. During each period of daily activity the type of arm movement (flexion, abduction, internal/external rotation) its velocity and frequency (number of movement/hour) were estimated. The results showed that during the whole daily activity and for each activity (i.e. walking, sitting and walking) the frequency of internal/external rotation was significantly higher while the frequency of abduction was the lowest (P < 0.009). In spite of higher number of flexion, abduction and internal/external rotation in the dominant arm, we have not observed in our population a significant difference with the non-dominant arm, implying that in healthy subjects the arm dominance does not lie considerably on the number of movements. As expected, the frequency of the movement increased from sitting to standing and from standing to walking, while we provide a quantitative value of this change during daily activity. This study provides preliminary evidence that this system is a useful tool for objectively assessing upper-limb activity during daily activity. The results obtained with the healthy population could be used as control data to evaluate arm movement of patients with shoulder diseases during daily activity.
Resumo:
BACKGROUND: Soft tissue sarcomas of the trunk wall (STS-TW) are usually studied together with soft tissue sarcomas of other locations. We report a study on STS-TW forming part of the French Sarcoma Group database. PATIENTS AND METHODS: Three hundred and forty-three adults were included. We carried out univariate and multivariate analysis for overall survival (OS), metastasis-free survival (MFS) and local recurrence-free survival (LRFS). RESULTS: Tumor locations were as follows: thoracic wall, 82.5%; abdominal wall, 12.3% and pelvic wall, 5.2%. Median tumor size was 6.0 cm. The most frequent tumor types were unclassified sarcoma (27.7%) and myogenic sarcoma (19.2%). A total of 44.6% of cases were grade 3. In all, 21.9% of patients had a previous medical history of radiotherapy (PHR). Median follow-up was 7.6 years. The 5-year OS, MFS and LRFS rates were 60.4%, 68.9% and 58.4%, respectively. Multivariate analysis retained PHR and grade for predicting LRFS and PHR, size and grade as prognostic factors of MFS. Factors influencing OS were age, size, PHR, depth, grade and surgical margins. The predictive factors of incomplete response were PHR, size and T3. CONCLUSIONS: Our results suggest similar classical prognostic factors as compared with sarcomas of other locations. However, a separate analysis of STS-TW revealed a significant poor prognosis subgroup of patients with PHR.
Resumo:
Motivation. The study of human brain development in itsearly stage is today possible thanks to in vivo fetalmagnetic resonance imaging (MRI) techniques. Aquantitative analysis of fetal cortical surfacerepresents a new approach which can be used as a markerof the cerebral maturation (as gyration) and also forstudying central nervous system pathologies [1]. However,this quantitative approach is a major challenge forseveral reasons. First, movement of the fetus inside theamniotic cavity requires very fast MRI sequences tominimize motion artifacts, resulting in a poor spatialresolution and/or lower SNR. Second, due to the ongoingmyelination and cortical maturation, the appearance ofthe developing brain differs very much from thehomogenous tissue types found in adults. Third, due tolow resolution, fetal MR images considerably suffer ofpartial volume (PV) effect, sometimes in large areas.Today extensive efforts are made to deal with thereconstruction of high resolution 3D fetal volumes[2,3,4] to cope with intra-volume motion and low SNR.However, few studies exist related to the automatedsegmentation of MR fetal imaging. [5] and [6] work on thesegmentation of specific areas of the fetal brain such asposterior fossa, brainstem or germinal matrix. Firstattempt for automated brain tissue segmentation has beenpresented in [7] and in our previous work [8]. Bothmethods apply the Expectation-Maximization Markov RandomField (EM-MRF) framework but contrary to [7] we do notneed from any anatomical atlas prior. Data set &Methods. Prenatal MR imaging was performed with a 1-Tsystem (GE Medical Systems, Milwaukee) using single shotfast spin echo (ssFSE) sequences (TR 7000 ms, TE 180 ms,FOV 40 x 40 cm, slice thickness 5.4mm, in plane spatialresolution 1.09mm). Each fetus has 6 axial volumes(around 15 slices per volume), each of them acquired inabout 1 min. Each volume is shifted by 1 mm with respectto the previous one. Gestational age (GA) ranges from 29to 32 weeks. Mother is under sedation. Each volume ismanually segmented to extract fetal brain fromsurrounding maternal tissues. Then, in-homogeneityintensity correction is performed using [9] and linearintensity normalization is performed to have intensityvalues that range from 0 to 255. Note that due tointra-tissue variability of developing brain someintensity variability still remains. For each fetus, ahigh spatial resolution image of isotropic voxel size of1.09 mm is created applying [2] and using B-splines forthe scattered data interpolation [10] (see Fig. 1). Then,basal ganglia (BS) segmentation is performed on thissuper reconstructed volume. Active contour framework witha Level Set (LS) implementation is used. Our LS follows aslightly different formulation from well-known Chan-Vese[11] formulation. In our case, the LS evolves forcing themean of the inside of the curve to be the mean intensityof basal ganglia. Moreover, we add local spatial priorthrough a probabilistic map created by fitting anellipsoid onto the basal ganglia region. Some userinteraction is needed to set the mean intensity of BG(green dots in Fig. 2) and the initial fitting points forthe probabilistic prior map (blue points in Fig. 2). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed as described in [8]. Results.The case study presented here has 29 weeks of GA. Thehigh resolution reconstructed volume is presented in Fig.1. The steps of BG segmentation are shown in Fig. 2.Overlap in comparison with manual segmentation isquantified by the Dice similarity index (DSI) equal to0.829 (values above 0.7 are considered a very goodagreement). Such BG segmentation has been applied on 3other subjects ranging for 29 to 32 GA and the DSI hasbeen of 0.856, 0.794 and 0.785. Our segmentation of theinner (red and blue contours) and outer cortical surface(green contour) is presented in Fig. 3. Finally, torefine the results we include our WM segmentation in theFreesurfer software [12] and some manual corrections toobtain Fig.4. Discussion. Precise cortical surfaceextraction of fetal brain is needed for quantitativestudies of early human brain development. Our workcombines the well known statistical classificationframework with the active contour segmentation forcentral gray mater extraction. A main advantage of thepresented procedure for fetal brain surface extraction isthat we do not include any spatial prior coming fromanatomical atlases. The results presented here arepreliminary but promising. Our efforts are now in testingsuch approach on a wider range of gestational ages thatwe will include in the final version of this work andstudying as well its generalization to different scannersand different type of MRI sequences. References. [1]Guibaud, Prenatal Diagnosis 29(4) (2009). [2] Rousseau,Acad. Rad. 13(9), 2006, [3] Jiang, IEEE TMI 2007. [4]Warfield IADB, MICCAI 2009. [5] Claude, IEEE Trans. Bio.Eng. 51(4) (2004). [6] Habas, MICCAI (Pt. 1) 2008. [7]Bertelsen, ISMRM 2009 [8] Bach Cuadra, IADB, MICCAI 2009.[9] Styner, IEEE TMI 19(39 (2000). [10] Lee, IEEE Trans.Visual. And Comp. Graph. 3(3), 1997, [11] Chan, IEEETrans. Img. Proc, 10(2), 2001 [12] Freesurfer,http://surfer.nmr.mgh.harvard.edu.
Resumo:
Most hybrid zones have existed for hundreds or thousands of years but have generally been observed for only a short time period. Studies extending over periods long enough to track evolutionary changes in the zones or assess the ultimate outcome of hybridization are scarce. Here, we describe the evolution over time of the level of genetic isolation between two karyotypically different species of shrews (Sorex araneus and Sorex antinorii) at a hybrid zone located in the Swiss Alps. We first evaluated hybrid zone movement by contrasting patterns of gene flow and changes in cline parameters (centre and width) using 24 microsatellite loci, between two periods separated by 10 years apart. Additionally, we tested the role of chromosomal rearrangements on gene flow by analysing microsatellite loci located on both rearranged and common chromosomes to both species. We did not detect any movement of the hybrid zone during the period analysed, suggesting that the zone is a typical tension zone. However, the gene flow was significantly lower among the rearranged than the common chromosomes for the second period, whereas the difference was only marginally significant for the first period. This further supports the role of chromosomal rearrangements on gene flow between these taxa.
Resumo:
HYPOTHESIS: The nonanatomical design of reverse shoulder prostheses induce medial displacement of the center of rotation, impingements and may reduce the mobility of the shoulder. The aim of this study is to test the hypothesis that during activities of daily living functional mobility of the shoulder can be restored by scapular compensation. MATERIAL AND METHODS: A numerical 3-dimensional model was developed to reproduce the movement of the scapula and humerus, during 4 activities of daily living measured experimentally. This hypothesis was tested in 4 configurations of the aequalis reverse prosthesis (standard 36-mm glenosphere, 42-mm glenosphere, lateralized 36-mm glenosphere, lateralized Bony Increased-Offset Reverse Shoulder Arthroplasty [BIO-RSA]), which were implanted in the virtual model. All impingement positions were evaluated, as the required scapular compensation to avoid impingements. RESULTS: With the 36-mm glenosphere, impingements occurred only for rest of hand to back-pocket positions. The 42-mm partly improved the mobility. The 2 lateralized glenospheres were free of impingement. When impingements occurred, the scapular compensation was less than 10°. CONCLUSION: Most reverse prostheses impingements reported in clinical and biomechanical studies can be avoided, either by scapular compensation or by a glenosphere lateralization. After reverse shoulder arthroplasty, a fraction of the mobility of the gleno-humeral is transferred to the scapulo-thoracic joint.
Resumo:
Introduction: Several methods have already been proposed to improve the mobility of reversed prostheses (lateral or inferior displacement, increase of the glenosphere size). However, the effect of these design changes have only been evaluated on the maximal range of motion and were not related to activities of daily living (ADL). Our aim was thus to measure the effect of these design changes and to relate it to 4 typical ADL. Methods: CT data were used to reconstruct a accurate geometric model of the scapula and humerus. The Aequalis reversed prosthesis (Tornier) was used. The mobility of a healthy shoulder was compared to the mobility of 4 different reversed designs: 36 and 42 mm glenospheres diameters, inferior (4 mm) and lateral (3.2 mm) glenospheres displacements. The complete mobility map of the prosthesis was compared to kinematics measurement on healthy subjects for 4 ADL: 1) hand to contra lateral shoulder, 2) hand to mouth, 3) combing hair, 4) hand to back pocket. The results are presented as percentage of the allowed movement of the prosthestic shouder relative to the healthy shoulder, considered as the control group. Results: None of the tested designs allowed to recover a full mobility. The differences of allowed range of motion among each prosthetic designs appeared mainly in two of the 4 movements: hand to back pocket and hand to contra lateral shoulder. For the hand to back pocket, the 36 had the lowest mobility range, particularly for the last third of the movement. The 42 appeared to be a good compromise for all ADL activities. Conclusion: Reverse shoulder prostheses does not allow to recover a full range of motion compared to healthy shoulders, even for ADL. The present study allowed to obtain a complete 3D mobility map for several glenosphere positions and sizes, and to relate it to typical ADL. We mainly observed an improved mobility with inferior displacement and increased glenosphere size. We would suggest to use larger glenosphere, whenever it is possible.
Resumo:
PURPOSE: This descriptive article illustrates the application of Global Positioning System (GPS) professional receivers in the field of locomotion studies. The technological challenge was to assess the external mechanical work in outdoor walking. METHODS: Five subjects walked five times during 5 min on an athletic track at different imposed stride frequency (from 70-130 steps x min(-1)). A differential GPS system (carrier phase analysis) measured the variation of the position of the trunk at 5 Hz. A portable indirect calorimeter recorded breath-by-breath energy expenditure. RESULTS: For a walking speed of 1.05 +/- 0.11 m x s(-1), the vertical lift of the trunk (43 +/- 14 mm) induced a power of 46.0 +/- 20.4 W. The average speed variation per step (0.15 +/- 0.03 m x s(-1)) produced a kinetic power of 16.9 +/- 7.2 W. As compared with commonly admitted values, the energy exchange (recovery) between the two energy components was low (39.1 +/- 10.0%), which induced an overestimated mechanical power (38.9 +/- 18.3 W or 0.60 W x kg(-1) body mass) and a high net mechanical efficiency (26.9 +/- 5.8%). CONCLUSION: We assumed that the cause of the overestimation was an unwanted oscillation of the GPS antenna. It is concluded that GPS (in phase mode) is now able to record small body movements during human locomotion, and constitutes a promising tool for gait analysis of outdoor unrestrained walking. However, the design of the receiver and the antenna must be adapted to human experiments and a thorough validation study remains to be conducted.
Resumo:
In vivo fetal magnetic resonance imaging provides aunique approach for the study of early human braindevelopment [1]. In utero cerebral morphometry couldpotentially be used as a marker of the cerebralmaturation and help to distinguish between normal andabnormal development in ambiguous situations. However,this quantitative approach is a major challenge becauseof the movement of the fetus inside the amniotic cavity,the poor spatial resolution provided by very fast MRIsequences and the partial volume effect. Extensiveefforts are made to deal with the reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution [2,3,4]. Frameworkswere developed for the segmentation of specific regionsof the fetal brain such as posterior fossa, brainstem orgerminal matrix [5,6], or for the entire brain tissue[7,8], applying the Expectation-Maximization MarkovRandom Field (EM-MRF) framework. However, many of theseprevious works focused on the young fetus (i.e. before 24weeks) and use anatomical atlas priors to segment thedifferent tissue or regions. As most of the gyraldevelopment takes place after the 24th week, acomprehensive and clinically meaningful study of thefetal brain should not dismiss the third trimester ofgestation. To cope with the rapidly changing appearanceof the developing brain, some authors proposed a dynamicatlas [8]. To our opinion, this approach however faces arisk of circularity: each brain will be analyzed /deformed using the template of its biological age,potentially biasing the effective developmental delay.Here, we expand our previous work [9] to proposepost-processing pipeline without prior that allow acomprehensive set of morphometric measurement devoted toclinical application. Data set & Methods: Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences (TR 7000 ms, TE 180 ms, FOV 40 x 40 cm,slice thickness 5.4mm, in plane spatial resolution1.09mm). For each fetus, 6 axial volumes shifted by 1 mmwere acquired under motherâeuro?s sedation (about 1min pervolume). First, each volume is segmentedsemi-automatically using region-growing algorithms toextract fetal brain from surrounding maternal tissues.Inhomogeneity intensity correction [10] and linearintensity normalization are then performed. Brain tissues(CSF, GM and WM) are then segmented based on thelow-resolution volumes as presented in [9]. Ahigh-resolution image with isotropic voxel size of 1.09mm is created as proposed in [2] and using B-splines forthe scattered data interpolation [11]. Basal gangliasegmentation is performed using a levet setimplementation on the high-resolution volume [12]. Theresulting white matter image is then binarized and givenas an input in FreeSurfer software(http://surfer.nmr.mgh.harvard.edu) to providetopologically accurate three-dimensional reconstructionsof the fetal brain according to the local intensitygradient. References: [1] Guibaud, Prenatal Diagnosis29(4) (2009). [2] Rousseau, Acad. Rad. 13(9), 2006. [3]Jiang, IEEE TMI 2007. [4] Warfield IADB, MICCAI 2009. [5]Claude, IEEE Trans. Bio. Eng. 51(4) 2004. [6] Habas,MICCAI 2008. [7] Bertelsen, ISMRM 2009. [8] Habas,Neuroimage 53(2) 2010. [9] Bach Cuadra, IADB, MICCAI2009. [10] Styner, IEEE TMI 19(39 (2000). [11] Lee, IEEETrans. Visual. And Comp. Graph. 3(3), 1997. [12] BachCuadra, ISMRM 2010.
Resumo:
Case: A 11 yo girl with Marfan syndrome was referred to cardiac MR (CMR) to measure the size of her thoracic aorta. She had a typical phenotype with arachnodactyly, abnormally long arms, and was tall and slim (156 cm, 28 kg, body mass index 11,5 kg/m2). She complained of no symptoms. Cardiac auscultation revealed a prominent mid-systolic click and an end-systolic murmur at the apex. A recent echocardiogram showed a moderately dilated left ventricle with normal function and a mitral valve prolapse with moderate mitral valve regurgitation. CMR showed a dilatation of the aortic root (38 mm, Z-score 8.9) and a severe prolapse of the mitral valve with regurgitation. The ventricular cavity was moderately dilated (116 ml/m2) and its contraction was hyperdynamic (stroke volume (SV): 97 ml; LVEF 72%, with the LV volumes measured by modified Simpson method from the apex to the mitral annulus). In this patient however, the mitral prolapse was characterized by a severe backward movement of the valve toward the left atrium (LA) in systole and the dyskinetic movement of the atrioventricular plane caused a ventricularisation of a part of the LA in systole (Figure). This resulted in a significant reduction of LVEF: more than ¼ of the apparent SV was displaced backwards into the ventricularized LA volume, reducing the effective LVEF to 51% (effective SV 69ml). Moreover, by flow measurement, the SV across the ascending aorta was 30 ml (cardiac index 2.0 l/min/m2) allowing the calculation of a regurgitant fraction across the mitral valve of 56%, which was diagnostic for a severe mitral valve insufficiency. Conclusion: This case illustrates the phenomenon of a ventricularisation of the LA where the severe prolapse gives the illusion of a higher attachement of the mitral leaflets within the atrial wall. Besides the severe mitral regurgitation, this paradoxical backwards movement of the valve causes an intraventricular unloading during systole reducing the apparent LVEF of 72% to an effective LVEF of only 51%. In addition, forward flow fraction is only 22% after accounting for the regurgitant volume, as well. This combined involvement of the mitral valve could explain the discrepancy between a low output state and an apparently hyperdynamic LV contraction. Due to its ability to precisely measure flows and volumes, CMR is particularly suited to detect this phenomenon and to quantify its impact on the LV pump function.
Resumo:
OBJECTIVE: The movement of the upper limbs (eg fidgeting-like activities) is a meaningful component of nonexercise activity thermogenesis (NEAT). This study examined the relationship between upper limb movements and whole body trunk movements, by simultaneously measuring energy expenditure during the course of the day. DESIGN: A cross-sectional study consisting of 88 subjects with a wide range in body mass index (17.3-32.5 kg/m(2)). The energy expenditure over a 24-h period was measured in a large respiratory chamber. The body movements were assessed by two uniaxial-accelerometers during daytime, one on the waist and the other on the dominant arm. The accelerometry scores from level 0 (=immobile) up to level 9 (=maximal intensity) were recorded. The activities of subjects were classified into eight categories: walking at two speeds on a horizontal treadmill (A & B), ambling (C), self-care tasks (D), desk work (E), meals (F), reading (G), watching TV (H). RESULTS: There was a significant relationship between the accelerometry scores from the waist (ACwaist) and that from the wrist (ACwrist) over the daytime period (R(2)=0.64; P<0.001). The ACwrist was systematically higher than the ACwaist during sedentary activities, whereas it was the reverse for walking activities. ACwrist to ACwaist ratio of activities E-H were above 1.0 and for walking activities (A-C) were below 1.0. A multiple regression analysis for predicting daytime energy expenditure revealed that the explained variance improved by 2% only when the ACwrist was added as a second predictor in addition to the ACwaist. This indicates that the effect of the ACwrist for predicting energy expenditure was of limited importance in our conditions of measurement. CONCLUSIONS: The acceleration of the upper limbs which includes fidgeting is more elevated than that of the whole body for sitting/lying down activities. However, their contribution to energy expenditure is lower than whole body trunk movements, thus indicating that the weight-bearing locomotion activities may be a key component of NEAT. However, its contribution may depend on the total duration of the upper limb movements during the course of the day.
Resumo:
After foot and/or ankle fracture, the restoration of optimal gait symmetry is one of the criteria of recovery. Orthotic insoles and orthopaedic shoes improve gait symmetry and regularity by controlling joint motion and improving alignment. The aim of the present study was to assess the effect of prescription footwear on gait quality by using accelerometers attached to the lower back. Sixteen adult patients with persistent disability after ankle and/or foot fractures performed two 30-s walking trials with and without prescription footwear (insoles and stabilizing shoes). Sixteen control subjects were also tested for comparison. The autocorrelation function was computed from the acceleration signal and the first two dominant periods were assessed (d1 and d2). Two parameters were used: (1) Stride Regularity (SR) which expresses the similarity between strides over time (d2), and (2) Stride Symmetry (SS) a ratio (d1/d2) which expresses the left/right similarity of gait independently of repeatability in the successive movements of each limb. In control subjects, SR and SS were 0.86+/-0.05 (correlation coefficient) and 81+/-10%, respectively. In the patient group, the effect of footwear was significant (SR: 0.88+/-0.06 vs. 0.90+/-0.05, SS: 38+/-23% vs. 46+/-27%). Pain was also significantly reduced (-34%). By using a rapid and low-cost method, we objectively quantified gait quality improvement after footwear intervention, concomitant to pain reduction. Substantial inter-patient variability in the footwear outcome was observed. In conclusion, we believe that trunk accelerometry can be a useful tool in the field of gait rehabilitation.