19 resultados para Motor assessment
em Université de Lausanne, Switzerland
Resumo:
The value of various indexes to characterize the stimulus-response curve of human motor nerves was assessed in 40 healthy subjects recruited from four European centers of investigation (Créteil, Lausanne, Liège, Marseille). Stimulus-response curves were established by stimulating the right median and ulnar motor nerves at the wrist, with stimulus durations of 0.05 and 0.5 ms. The following parameters were studied: the threshold intensity of stimulation to obtain 10% (I 10), 50% (I 50), and 90% (I 90) of the maximal compound muscle action potential, the ratios I 10/I 50, I 90/I 50, (I 90 - I 10)/I 10, (I 90-I 50)/I 50, and (I 50 - I 10)/I 10, and the slopes of the stimulus-response curves with or without normalization to I 50. For each parameter, within-center variability and reproducibility (in a test-retest study) were assessed and between-center comparisons were made. For most of the parameters, the results varied significantly within and between the centers. Within the centers, only the ratios I 10/I 50 and I 90/I 50 were found constant and reproducible. Between the centers, the absolute intensity thresholds (I 10, I 50, I 90) and the ratio I 90/I 50 did not show significant differences at stimulus duration of 0.5 ms, whatever the stimulated nerve. The reduced variability and good reproducibility of the ratios I 10/I 50 and I 90/I 50 open perspectives in neurophysiological practice for the use of these indexes of the stimulus-response curve, a rapid and noninvasive test.
Resumo:
Fall prevention in elderly subjects is often based on training and rehabilitation programs that include mostly traditional balance and strength exercises. By applying such conventional interventions to improve gait performance and decrease fall risk, some important factors are neglected such as the dynamics of the gait and the motor learning processes. The EU project "Self Mobility Improvement in the eLderly by counteractING falls" (SMILING project) aimed to improve age-related gait and balance performance by using unpredicted external perturbations during walking through motorized shoes that change insole inclination at each stance. This paper describes the shoe-worn inertial module and the gait analysis method needed to control in real-time the shoe insole inclination during training, as well as gait spatio-temporal parameters obtained during long distance walking before and after the 8-week training program that assessed the efficacy of training with these motorized shoes.
Resumo:
OBJECTIVE: The movement of the upper limbs (eg fidgeting-like activities) is a meaningful component of nonexercise activity thermogenesis (NEAT). This study examined the relationship between upper limb movements and whole body trunk movements, by simultaneously measuring energy expenditure during the course of the day. DESIGN: A cross-sectional study consisting of 88 subjects with a wide range in body mass index (17.3-32.5 kg/m(2)). The energy expenditure over a 24-h period was measured in a large respiratory chamber. The body movements were assessed by two uniaxial-accelerometers during daytime, one on the waist and the other on the dominant arm. The accelerometry scores from level 0 (=immobile) up to level 9 (=maximal intensity) were recorded. The activities of subjects were classified into eight categories: walking at two speeds on a horizontal treadmill (A & B), ambling (C), self-care tasks (D), desk work (E), meals (F), reading (G), watching TV (H). RESULTS: There was a significant relationship between the accelerometry scores from the waist (ACwaist) and that from the wrist (ACwrist) over the daytime period (R(2)=0.64; P<0.001). The ACwrist was systematically higher than the ACwaist during sedentary activities, whereas it was the reverse for walking activities. ACwrist to ACwaist ratio of activities E-H were above 1.0 and for walking activities (A-C) were below 1.0. A multiple regression analysis for predicting daytime energy expenditure revealed that the explained variance improved by 2% only when the ACwrist was added as a second predictor in addition to the ACwaist. This indicates that the effect of the ACwrist for predicting energy expenditure was of limited importance in our conditions of measurement. CONCLUSIONS: The acceleration of the upper limbs which includes fidgeting is more elevated than that of the whole body for sitting/lying down activities. However, their contribution to energy expenditure is lower than whole body trunk movements, thus indicating that the weight-bearing locomotion activities may be a key component of NEAT. However, its contribution may depend on the total duration of the upper limb movements during the course of the day.
Resumo:
We report a novel technique for computing diet-induced thermogenesis using data from 24-h respiration chamber measurements of 76 subjects. Physical activity (PA) was determined using a radar system to assess its duration and an accelerometer to evaluate its intensity. The regression line relating PA and energy expenditure facilitated calculation of the integrated thermogenic response to the total energy ingested (11.4% ± 3.8%), which is consistent with the values classically reported in the literature (10%) at the group level.
Resumo:
The relationship between motor and intellectual functions was examined in 252 healthy children from 7 to 18 years using the Zurich Neuromotor Assessment and standardized intelligence tests. The magnitude of Spearman correlations between neuromotor and intellectual scores was generally weak (r = 0.15-0.37). The strongest correlations were found between performance in the pegboard task and visuomotor intelligence (r = 0.35) and between contralateral associated movements and intelligence in boys (r = 0.37). We conclude that specific connections between motor and intellectual functions may exist. However, because the magnitude of correlations is generally weak, we suggest that motor and intellectual domains in healthy children are largely independent.
Resumo:
BACKGROUND:: Although cell therapy is a promising approach after cerebral cortex lesion, few studies assess quantitatively its behavioral gain in non-human primates. Furthermore, implantations of fetal grafts of exogenous stem cells are limited by safety and ethical issues. OBJECTIVE:: To test in non-human primates the transplantation of autologous adult neural progenitor cortical cells with assessment of functional outcome. METHODS:: Seven adult macaque monkeys were trained to perform a manual dexterity task, before the hand representation in motor cortex was chemically lesioned unilaterally. Five monkeys were used as control, compared to two monkeys subjected to different autologous cells transplantation protocols performed at different time intervals. RESULTS:: After lesion, there was a complete loss of manual dexterity in the contralesional hand. The five "control" monkeys recovered progressively and spontaneously part of their manual dexterity, reaching a unique and definitive plateau of recovery, ranging from 38% to 98% of pre-lesion score after 10 to 120 days. The two "treated" monkeys reached a first spontaneous recovery plateau at about 25 and 40 days post-lesion, representing 35% and 61% of the pre-lesion performance, respectively. In contrast to the controls, a second recovery plateau took place 2-3 months after cell transplantation, corresponding to an additional enhancement of functional recovery, representing 24 and 37% improvement, respectively. CONCLUSIONS:: These pilot data, derived from two monkeys treated differently, suggest that, in the present experimental conditions, autologous adult brain progenitor cell transplantation in non-human primate is safe and promotes enhancement of functional recovery.
Resumo:
Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcome.
Resumo:
An established tool for the assessment of motor performance in children with developmental coordination disorder (DCD) is the Movement-ABC-2 (M-ABC-2). The Zurich Neuromotor Assessment (ZNA) is also widely used for the evaluation of children's motor performance, but has not been compared with the M-ABC-2. Fifty-one children (39 males) between 5 and 7 years of age with suspected DCD were assessed using the M-ABC-2 and the ZNA. Rank correlations between scores of different test components were calculated. The structure of the tests was explored using canonical-correlation analysis. The correlation between total scores of the two motor tests was reasonable (0.66; p<0.001). However, ZNA scores were generally lower than those of M-ABC-2, due to poor performance in the fine motor adaptive component and increased contralateral associated movements (CAM). The canonical-correlation analysis revealed that ZNA measures components like pure motor skills and CAM that are not represented in the M-ABC-2. Furthermore, there was also no equivalent for the aiming and catching items of the M-ABC-2 in ZNA. The two tests measure different motor characteristics in children with suspected DCD and, thus, can be used complementary for the diagnosis of the disorder.
Resumo:
BACKGROUND CONTEXT: Studies involving factor analysis (FA) of the items in the North American Spine Society (NASS) outcome assessment instrument have revealed inconsistent factor structures for the individual items. PURPOSE: This study examined whether the factor structure of the NASS varied in relation to the severity of the back/neck problem and differed from that originally recommended by the developers of the questionnaire, by analyzing data before and after surgery in a large series of patients undergoing lumbar or cervical disc arthroplasty. STUDY DESIGN/SETTING: Prospective multicenter observational case series. PATIENT SAMPLE: Three hundred ninety-one patients with low back pain and 553 patients with neck pain completed questionnaires preoperatively and again at 3 to 6 and 12 months follow-ups (FUs), in connection with the SWISSspine disc arthroplasty registry. OUTCOME MEASURES: North American Spine Society outcome assessment instrument. METHODS: First, an exploratory FA without a priori assumptions and subsequently a confirmatory FA were performed on the 17 items of the NASS-lumbar and 19 items of the NASS-cervical collected at each assessment time point. The item-loading invariance was tested in the German version of the questionnaire for baseline and FU. RESULTS: Both NASS-lumbar and NASS-cervical factor structures differed between baseline and postoperative data sets. The confirmatory analysis and item-loading invariance showed better fit for a three-factor (3F) structure for NASS-lumbar, containing items on "disability," "back pain," and "radiating pain, numbness, and weakness (leg/foot)" and for a 5F structure for NASS-cervical including disability, "neck pain," "radiating pain and numbness (arm/hand)," "weakness (arm/hand)," and "motor deficit (legs)." CONCLUSIONS: The best-fitting factor structure at both baseline and FU was selected for both the lumbar- and cervical-NASS questionnaires. It differed from that proposed by the originators of the NASS instruments. Although the NASS questionnaire represents a valid outcome measure for degenerative spine diseases, it is able to distinguish among all major symptom domains (factors) in patients undergoing lumbar and cervical disc arthroplasty; overall, the item structure could be improved. Any potential revision of the NASS should consider its factorial structure; factorial invariance over time should be aimed for, to allow for more precise interpretations of treatment success.
Resumo:
Over the last decades, a decline in motor skills and in physical activity and an increase in obesity has been observed in children. However, there is a lack of data in young children. We tested if differences in motor skills and in physical activity according to weight or gender were already present in 2- to 4-year-old children. Fifty-eight child care centers in the French part of Switzerland were randomly selected for the Youp'là bouge study. Motor skills were assessed by an obstacle course including 5 motor skills, derived from the Zurich Neuromotor Assessment test. Physical activity was measured with accelerometers (GT1M, Actigraph, Florida, USA) using age-adapted cut-offs. Weight status was assessed using the International Obesity Task Force criteria (healthy weight vs overweight) for body mass index (BMI). Of the 529 children (49% girls, 3.4 ± 0.6 years, BMI 16.2 ± 1.2 kg/m2), 13% were overweight. There were no significant weight status-related differences in the single skills of the obstacle course, but there was a trend (p = 0.059) for a lower performance of overweight children in the overall motor skills score. No significant weight status-related differences in child care-based physical activity were observed. No gender-related differences were found in the overall motor skills score, but boys performed better than girls in 2 of the 5 motor skills (p ≤ 0.04). Total physical activity as well as time spent in moderate-vigorous and in vigorous activity during child care were 12-25% higher and sedentary activity 5% lower in boys compared to girls (all p < 0.01). At this early age, there were no significant weight status- or gender-related differences in global motor skills. However, in accordance to data in older children, child care-based physical activity was higher in boys compared to girls. These results are important to consider when establishing physical activity recommendations or targeting health promotion interventions in young children.
Resumo:
Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion laboratory settings or simple timing outcomes using stop watches. The goal of this paper is to present an innovative technology based on wearable sensors on-shoe and processing algorithm, which provides outcome measures characterizing PD motor symptoms during TUG and gait tests. Our results on ten PD patients and ten age-matched elderly subjects indicate an accuracy ± precision of 2.8 ± 2.4 cm/s and 1.3 ± 3.0 cm for stride velocity and stride length estimation compared to optical motion capture, with the advantage of being practical to use in home or clinics without any discomfort for the subject. In addition, the use of novel spatio-temporal parameters, including turning, swing width, path length, and their intercycle variability, was also validated and showed interesting tendencies for discriminating patients in ON and OFF states and control subjects.
Resumo:
AIM: To study the development of motor speed and associated movements in participants aged 5 to 18 years for age, sex, and laterality. METHOD: Ten motor tasks of the Zurich Neuromotor Assessment (repetitive and alternating movements of hands and feet, repetitive and sequential finger movements, the pegboard, static and dynamic balance, diadochokinesis) were administered to 593 right-handed participants (286 males, 307 females). RESULTS: A strong improvement with age was observed in motor speed from age 5 to 10, followed by a levelling-off between 12 and 18 years. Simple tasks and the pegboard matured early and complex tasks later. Simple tasks showed no associated movements beyond early childhood; in complex tasks associated movements persisted until early adulthood. The two sexes differed only marginally in speed, but markedly in associated movements. A significant laterality (p<0.001) in speed was found for all tasks except for static balance; the pegboard was most lateralized, and sequential finger movements least. Associated movements were lateralized only for a few complex tasks. We also noted a substantial interindividual variability. INTERPRETATION: Motor speed and associated movements improve strongly in childhood, weakly in adolescence, and are both of developmental relevance. Because they correlate weakly, they provide complementary information.
Resumo:
OBJECTIVES: In this study, we investigated the structural plasticity of the contralesional motor network in ischemic stroke patients using diffusion magnetic resonance imaging (MRI) and explored a model that combines a MRI-based metric of contralesional network integrity and clinical data to predict functional outcome at 6 months after stroke. METHODS: MRI and clinical examinations were performed in 12 patients in the acute phase, at 1 and 6 months after stroke. Twelve age- and gender-matched controls underwent 2 MRIs 1 month apart. Structural remodeling after stroke was assessed using diffusion MRI with an automated measurement of generalized fractional anisotropy (GFA), which was calculated along connections between contralesional cortical motor areas. The predictive model of poststroke functional outcome was computed using a linear regression of acute GFA measures and the clinical assessment. RESULTS: GFA changes in the contralesional motor tracts were found in all patients and differed significantly from controls (0.001 ≤ p < 0.05). GFA changes in intrahemispheric and interhemispheric motor tracts correlated with age (p ≤ 0.01); those in intrahemispheric motor tracts correlated strongly with clinical scores and stroke sizes (p ≤ 0.001). GFA measured in the acute phase together with a routine motor score and age were a strong predictor of motor outcome at 6 months (r(2) = 0.96, p = 0.0002). CONCLUSION: These findings represent a proof of principle that contralesional diffusion MRI measures may provide reliable information for personalized rehabilitation planning after ischemic motor stroke. Neurology® 2012;79:39-46.
Resumo:
AIM: The aim of this cross-sectional study was to provide normative data (ordinal scores and timed performances) for gross and fine motor tasks in typically developing children between 3 and 5 years of age using the Zurich Neuromotor Assessment (ZNA). METHOD: Typically developing children (n=101; 48 males, 53 females) between 3 and 5 years of age were enrolled from day-care centres in the greater Zurich area and tested using a modified version of the ZNA; the tests were recorded digitally on video. Intraobserver reliability was assessed on the videos of 20 children by one examiner. Interobserver reliability was assessed by two examiners. Test-retest reliability was performed on an additional 20 children. The modelling approach summarized the data with a linear age effect and an additive term for sex, while incorporating informative missing data in the normative values. Normative data for adaptive motor tasks, pure motor tasks, and static and dynamic balance were calculated with centile curves (for timed performance) and expected ordinal scores (for ordinal scales). RESULTS: Interobserver, intraobserver, and test-retest reliability of tasks were moderate to good. Nearly all tasks showed significant age effects, whereas sex was significant only for stringing beads and hopping on one leg. INTERPRETATION: These results indicate that timed performance and ordinal scales of neuromotor tasks can be reliably measured in preschool children and are characterized by developmental change and high interindividual variability.