5 resultados para Motor (Electric) in industry.
em Université de Lausanne, Switzerland
Resumo:
In the context of an autologous cell transplantation study, a unilateral biopsy of cortical tissue was surgically performed from the right dorsolateral prefrontal cortex (dlPFC) in two intact adult macaque monkeys (dlPFC lesioned group), together with the implantation of a chronic chamber providing access to the left motor cortex. Three other monkeys were subjected to the same chronic chamber implantation, but without dlPFC biopsy (control group). All monkeys were initially trained to perform sequential manual dexterity tasks, requiring precision grip. The motor performance and the prehension's sequence (temporal order to grasp pellets from different spatial locations) were analysed for each hand. Following the surgery, transient and moderate deficits of manual dexterity per se occurred in both groups, indicating that they were not due to the dlPFC lesion (most likely related to the recording chamber implantation and/or general anaesthesia/medication). In contrast, changes of motor habit were observed for the sequential order of grasping in the two monkeys with dlPFC lesion only. The changes were more prominent in the monkey subjected to the largest lesion, supporting the notion of a specific effect of the dlPFC lesion on the motor habit of the monkeys. These observations are reminiscent of previous studies using conditional tasks with delay that have proposed a specialization of the dlPFC for visuo-spatial working memory, except that this is in a different context of "free-will", non-conditional manual dexterity task, without a component of working memory.
Resumo:
The main goal of training activities is to improve motor performance. After strenuous workouts, it is physiological to experience fatigue, which relieves within two weeks, and then induce an improvement in motor capacities. An overtraining syndrome is diagnosed when fatigue is postponed beyond two weeks, and affects mainly endurance athletes. It is a condition of chronic fatigue, underperformance and an increased vulnerability to infection leading to recurrent infections. The whole observed spectrum of symptoms is physiological, psychological, endocrinogical and immunological. All play a role in the failure to recover. Monitoring of athletes activities helps to prevent the syndrome with days with no sports. Rest, patience and empathy are the only ways of treatment options.
Resumo:
Previous studies have demonstrated that non-demented Parkinson's disease (PD) patients have a specific impairment of verb production compared with noun generation. One interpretation of this deficit suggested the influence of striato-frontal dysfunction on action-related verb processing. The aim of our study was to investigate cerebral changes after motor improvement due to dopaminergic medication on the neural circuitry supporting action representation in the brain as mediated by verb generation and motor imagery in PD patients. Functional magnetic resonance imaging on 8 PD patients in "ON" dopaminergic treatment state (DTS) and in "OFF" DTS was used to explore the brain activity during three different tasks: Object Naming (ObjN), Generation of Action Verbs (GenA) in which patients were asked to overtly say an action associated with a picture and mental simulation of action (MSoA) was investigated by asking subjects to mentally simulate an action related to a depicted object. The distribution of brain activities associated with these tasks whatever DTS was very similar to results of previous studies. The results showed that brain activity related to semantics of action is modified by dopaminergic treatment in PD patients. This cerebral reorganisation concerns mainly motor and premotor cortex suggesting an involvement of the putaminal motor loop according to the "motor" theory of verb processing.
Resumo:
Both individual socio-cultural determinants such as selected parental characteristics (migrant background, low educational level and workload) as well as the regional environment are related to childhood overweight and physical activity (PA). The purpose of the study was to compare the impact of distinct socio-cultural determinants such as the regional environment and selected parental characteristics on adiposity, PA and motor skills in preschool children. Forty preschools (N = 542 children) of two culturally different urban regions (German and French speaking part of Switzerland) participated in the study (Ballabeina Study). Outcome measures included adiposity (BMI and skinfold thickness), objectively measured sedentary activities and PA (accelerometers) and agility performance (obstacle course). Parental characteristics (migrant status, educational level and workload) were assessed by questionnaire. Children from the French speaking areas had higher adiposity, lower levels of total and of more intense PA, were more sedentary and less agile than children from the German speaking regions (percent differences for all outcome parameters except for BMI ≥10%; all p ≤ 0.04). Differences in skinfold thickness, sedentary activities and agility, but not in PA, were also found between children of Swiss and migrant parents, though they were ≤8% (p ≤ 0.02). While paternal workload had no effect, maternal workload and parental education resulted in differences in some PA measures and/or agility performance (percent differences in both: ≤9%, p ≤ 0.008), but not in adiposity or sedentary activities (p = NS). Regional differences in skinfold thickness, PA, sedentary activities and agility performance persisted after adjustment for parental socio-cultural characteristics, parental BMI and, where applicable, children's skinfolds (all p ≤ 0.01). The regional environment, especially the broader social environment, plays a prominent role in determining adiposity, PA and motor skills of young children and should be implicated in the prevention of obesity and promotion of PA in children. clinicaltrials.gov NCT00674544.
Resumo:
Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.