41 resultados para Motion pictures in agriculture
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses "sub-images" and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. METHODS: During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. RESULTS: Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. CONCLUSIONS: CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted.
Resumo:
RATIONALE AND OBJECTIVES: The purpose of this study was the investigation of the impact of real-time adaptive motion correction on image quality in navigator-gated, free-breathing, double-oblique three-dimensional (3D) submillimeter right coronary magnetic resonance angiography (MRA). MATERIALS AND METHODS: Free-breathing 3D right coronary MRA with real-time navigator technology was performed in 10 healthy adult subjects with an in-plane spatial resolution of 700 x 700 microm. Identical double-oblique coronary MR-angiograms were performed with navigator gating alone and combined navigator gating and real-time adaptive motion correction. Quantitative objective parameters of contrast-to-noise ratio (CNR) and vessel sharpness and subjective image quality scores were compared. RESULTS: Superior vessel sharpness, increased CNR, and superior image quality scores were found with combined navigator gating and real-time adaptive motion correction (vs. navigator gating alone; P < 0.01 for all comparisons). CONCLUSION: Real-time adaptive motion correction objectively and subjectively improves image quality in 3D navigator-gated free-breathing double-oblique submillimeter right coronary MRA.
Resumo:
BACKGROUND: MR tissue tagging allows the noninvasive assessment of the locally and temporally resolved motion pattern of the left ventricle. Alterations in cardiac torsion and diastolic relaxation of the left ventricle were studied in patients with aortic stenosis and were compared with those of healthy control subjects and championship rowers with physiological volume-overload hypertrophy. METHODS AND RESULTS: Twelve aortic stenosis patients, 11 healthy control subjects with normal left ventricular function, and 11 world-championship rowers were investigated for systolic and diastolic heart wall motion on a basal and an apical level of the myocardium. Systolic torsion and untwisting during diastole were examined by use of a novel tagging technique (CSPAMM) that provides access to systolic and diastolic motion data. In the healthy heart, the left ventricle performs a systolic wringing motion, with a counterclockwise rotation at the apex and a clockwise rotation at the base. Apical untwisting precedes diastolic filling. In the athlete's heart, torsion and untwisting remain unchanged compared with those of the control subjects. In aortic stenosis patients, torsion is significantly increased and diastolic apical untwisting is prolonged compared with those of control subjects or athletes. CONCLUSIONS: Torsional behavior as observed in pressure- and volume-overloaded hearts is consistent with current theoretical findings. A delayed diastolic untwisting in the pressure-overloaded hearts of the patients may contribute to a tendency toward diastolic dysfunction.
Resumo:
Despite the central role that emotional reactivity plays in adaptation, few studies have examined age differences in this capacity under well-controlled laboratory conditions, on the basis of standardized emotion-evoking stimuli and assessing experiential, expressive, and physiological measures. 212 adults ranging in age from 20 to 81 years were exposed to 14 picture series, each lasting 60 s and of a different valence and arousal. We assessed valence and arousal ratings, cardiovascular, respiratory and electrodermalmeasures, facial muscle activity and gaze activity. Here, we present findings for 22 younger (mean age=24.0) and 22 older (mean age=72.1) adults for valence and arousal ratings, systolic bloodpressure (SBP) andheart rate (HR).Compared to younger adults, older adults rated unpleasant seriesmore negatively and showed a smaller range in arousal for pleasant series. SBP linearly increased with increasing appetitive activation. HR showed the expected deceleration from the pleasant to the unpleasant series.However, this effect was clearer for the younger adults than the older adults. For older adults, if something is pleasant, it is also judged to be generally lower in arousal, whereas, if something is unpleasant, it is also judged to be generally higher in arousal. The results for SBP indicate that the association between arousal and sympathetic outflow to the cardiovascular system might be similar in younger and older adults. The results for HR suggest that the parasympathetic activation might be attenuated in older adults as compared to younger adults.
Resumo:
OBJECTIVES: This study aimed to assess the validity of COOP charts in a general population sample, to examine whether illustrations contribute to instrument validity, and to establish general population norms. METHODS: A general population mail survey was conducted among 20-79 years old residents of the Swiss canton of Vaud. Participants were invited to complete COOP charts, the SF-36 Health Survey; they also provided data on health service use in the previous month. Two thirds of the respondents received standard COOP charts, the rest received charts without illustrations. RESULTS: Overall 1250 persons responded (54%). The presence of illustrations did not affect score distributions, except that the illustrated 'physical fitness' chart drew greater non-response (10 vs. 3%, p < 0.001). Validity tests were similar for illustrated and picture-less charts. Factor analysis yielded two principal components, corresponding to physical and mental health. Six COOP charts showed strong and nearly linear relationships with corresponding SF36 scores (all p < 0.001), demonstrating concurrent validity. Similarly, most COOP charts were associated with the use of medical services in the past month. Only the chart on 'social support' partly deviated from construct validity hypotheses. Population norms revealed a generally lower health status in women and an age-related decline in physical health. CONCLUSIONS: COOP charts can be used to assess the health status of a general population. Their validity is good, with the possible exception of the 'social support' chart. The illustrations do not affect the properties of this instrument.
Resumo:
Diffusion-weighting in magnetic resonance imaging (MRI) increases the sensitivity to molecular Brownian motion, providing insight in the micro-environment of the underlying tissue types and structures. At the same time, the diffusion weighting renders the scans sensitive to other motion, including bulk patient motion. Typically, several image volumes are needed to extract diffusion information, inducing also inter-volume motion susceptibility. Bulk motion is more likely during long acquisitions, as they appear in diffusion tensor, diffusion spectrum and q-ball imaging. Image registration methods are successfully used to correct for bulk motion in other MRI time series, but their performance in diffusion-weighted MRI is limited since diffusion weighting introduces strong signal and contrast changes between serial image volumes. In this work, we combine the capability of free induction decay (FID) navigators, providing information on object motion, with image registration methodology to prospectively--or optionally retrospectively--correct for motion in diffusion imaging of the human brain. Eight healthy subjects were instructed to perform small-scale voluntary head motion during clinical diffusion tensor imaging acquisitions. The implemented motion detection based on FID navigator signals is processed in real-time and provided an excellent detection performance of voluntary motion patterns even at a sub-millimetre scale (sensitivity≥92%, specificity>98%). Motion detection triggered an additional image volume acquisition with b=0 s/mm2 which was subsequently co-registered to a reference volume. In the prospective correction scenario, the calculated motion-parameters were applied to perform a real-time update of the gradient coordinate system to correct for the head movement. Quantitative analysis revealed that the motion correction implementation is capable to correct head motion in diffusion-weighted MRI to a level comparable to scans without voluntary head motion. The results indicate the potential of this method to improve image quality in diffusion-weighted MRI, a concept that can also be applied when highest diffusion weightings are performed.
Resumo:
Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13(°) , respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1(°) for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI.
Resumo:
Captan and folpet are fungicides largely used in agriculture. They have similar chemical structures, except that folpet has an aromatic ring unlike captan. Their half-lives in blood are very short, given that they are readily broken down to tetrahydrophthalimide (THPI) and phthalimide (PI), respectively. Few authors measured these biomarkers in plasma or urine, and analysis was conducted either by gas chromatography coupled to mass spectrometry or liquid chromatography with UV detection. The objective of this study was thus to develop simple, sensitive and specific liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC/APCI-MS/MS) methods to quantify both THPI and PI in human plasma and urine. Briefly, deuterated THPI was added as an internal standard and purification was performed by solid-phase extraction followed by LC/APCI-MS/MS analysis in negative ion mode for both compounds. Validation of the methods was conducted using spiked blank plasma and urine samples at concentrations ranging from 1 to 250 μg/L and 1 to 50 μg/L, respectively, along with samples of volunteers and workers exposed to captan or folpet. The methods showed a good linearity (R (2) > 0.99), recovery (on average 90% for THPI and 75% for PI), intra- and inter-day precision (RSD, <15%) and accuracy (<20%), and stability. The limit of detection was 0.58 μg/L in urine and 1.47 μg/L in plasma for THPI and 1.14 and 2.17 μg/L, respectively, for PI. The described methods proved to be accurate and suitable to determine the toxicokinetics of both metabolites in human plasma and urine.
Resumo:
This work explores a concept for motion detection in brain MR examinations using high channel-count RF coil arrays. It applies ultrashort (<100 μsec) free induction decay signals, making use of the knowledge that motion induces variations in these signals when compared to a reference free induction decay signal. As a proof-of-concept, the method was implemented in a standard structural MRI sequence. The stability of the free induction decay-signal was verified in phantom experiments. Human experiments demonstrated that the observed variations in the navigator data provide a sensitive measure for detection of relevant and common subject motion patterns. The proposed methodology provides a means to monitor subject motion throughout a MRI scan while causing little or no impact on the sequence timing and image contrast. It could hence complement available motion detection and correction methods, thus further reducing motion sensitivity in MR applications.
Resumo:
Dendritic cells (DCs) are antigen presenting cells with an unique ability to induce primary immune responses. Different DCs subsets with an intrinsic capacity to polarise Tcells have been described: myeloid (Th1) and lymphoid (Th2). Plasticity is defined as DCs capacity to polarise T cells independent of the DCs origin. We investigated the potential role played by oxidants such as superoxide anion (·O2-), in the plasticity of DCs, measured by the induction of a specific DCs subset, cytokine release and antigen presentation. Furthermore, we are interested in the amplification of immune response analysed by the exosomes production after oxidative stress and LPS stimulation. Recently, we have demonstrated that exposure of cells to superoxide anions resulted in the activation of DC2 profile. To analyse the role of oxidative stress in DCs subsets, we used BDCA-1 and BDCA-2 antibodies, which identify myeloid and plasmacytoid DCs respectively. Freshly isolated monocytes have shown to be BDCA-1-, but BDCA-2+ populations. During 6 days culture up-regulation of BDCA-1, but a down-regulation of BDCA-2 were observed, giving a clear myeloid population. When DC were stimulated with superoxide anions or LPS, we have observed that both down regulate the expression of BDCA-1 when compared to immature DC. Antigen presentation was markedly altered according to the periodicity used, and antigens and oxidants exposures. Using DCs trapped in collagen "matrix" after LPS activation we were able to quantify DCs-exosomes (small membrane vesicles ~50-100 nm in diameter) by reconstruction pictures in three dimensions. Using double vital staining we have found that exosomes from activated DCs can fuse with the membrane of resting DCs. Understanding the capacity of DCs to integrate external signals we will be able to unravel and control Tcells-polarisation triggering a specific immune response or tolerance. We will be able also to understand the amplification role of DCs-exosomes in remote not yet activated DCs.
Resumo:
OBJECT: In this study the accuracy of multislice computerized tomography (MSCT) angiography in the postoperative examination of clip-occluded intracranial aneurysms was compared with that of intraarterial digital subtraction (DS) angiography METHODS: Forty-nine consecutive patients with 60 clipped aneurysms (41 of which had ruptured) were studied with the aid of postoperative MSCT and DS angiography. Both types of radiological studies were reviewed independently by two observers to assess the quality of the images, the artifacts left by the clips, the completeness of aneurysm occlusion, the patency of the parent vessel, and the duration and cost of the examination. The quality of MSCT angiography was good in 42 patients (86%). Poor-quality MSCT angiograms (14%) were a result of the late acquisition of images in three patients and the presence of clip or motion artifacts in four. Occlusion of the aneurysm on good-quality MSCT angiograms was confirmed in all but two patients in whom a small (2-mm) remnant was confirmed on DS angiograms. In one patient, occlusion of a parent vessel was seen on DS angiograms but missed on MSCT angiograms. The sensitivity and specificity for detecting neck remnants on MSCT angiography were both 100%, and the sensitivity and specificity for evaluating vessel patency were 80 and 100%, respectively (95% confidence interval 29.2-100%). Interobserver agreements were 0.765 and 0.86, respectively. The mean duration of the examination was 13 minutes for MSCT angiography and 75 minutes for DS angiography (p < 0.05). Multislice CT angiography was highly cost effective (p < 0.01). CONCLUSIONS: Current-generation MSCT angiography is an accurate noninvasive tool used for assessment of clipped aneurysms in the anterior circulation. Its high sensitivity and low cost warrant its use for postoperative routine control examinations following clip placement on an aneurysm. Digital subtraction angiography must be performed if the interpretation of MSCT angiograms is doubtful or if the aneurysm is located in the posterior circulation.
Resumo:
Skin exposures to chemicals may lead, through percutaneous permeation, to a significant increase in systemic circulation. Skin is the primary route of entry during some occupational activities, especially in agriculture. To reduce skin exposures, the use of personal protective equipment (PPE) is recommended. PPE efficiency is characterized as the time until products permeate through material (lag time, Tlag). Both skin and PPE permeations are assessed using similar in vitro methods; the diffusion cell system. Flow-through diffusion cells were used in this study to assess the permeation of two herbicides, bentazon and isoproturon, as well as four related commercial formulations (Basagran(®), Basamais(®), Arelon(®) and Matara(®)). Permeation was measured through fresh excised human skin, protective clothing suits (suits) (Microchem(®) 3000, AgriSafe Pro(®), Proshield(®) and Microgard(®) 2000 Plus Green), and a combination of skin and suits. Both herbicides, tested by itself or as an active ingredient in formulations, permeated readily through human skin and tested suits (Tlag < 2 h). High permeation coefficients were obtained regardless of formulations or tested membranes, except for Microchem(®) 3000. Short Tlag, were observed even when skin was covered with suits, except for Microchem(®) 3000. Kp values tended to decrease when suits covered the skin (except when Arelon(®) was applied to skin covered with AgriSafe Pro and Microgard(®) 2000), suggesting that Tlag alone is insufficient in characterizing suits. To better estimate human skin permeations, in vitro experiments should not only use human skin but also consider the intended use of the suit, i.e., the active ingredient concentrations and type of formulations, which significantly affect skin permeation.
Resumo:
The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of visual motion. Based on these data and evidence from neurophysiological and neuroimaging studies we discuss the neural mechanisms likely to underlie this effect.