208 resultados para Motion perception
em Université de Lausanne, Switzerland
Resumo:
Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.
Resumo:
The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of visual motion. Based on these data and evidence from neurophysiological and neuroimaging studies we discuss the neural mechanisms likely to underlie this effect.
Resumo:
An object's motion relative to an observer can confer ethologically meaningful information. Approaching or looming stimuli can signal threats/collisions to be avoided or prey to be confronted, whereas receding stimuli can signal successful escape or failed pursuit. Using movement detection and subjective ratings, we investigated the multisensory integration of looming and receding auditory and visual information by humans. While prior research has demonstrated a perceptual bias for unisensory and more recently multisensory looming stimuli, none has investigated whether there is integration of looming signals between modalities. Our findings reveal selective integration of multisensory looming stimuli. Performance was significantly enhanced for looming stimuli over all other multisensory conditions. Contrasts with static multisensory conditions indicate that only multisensory looming stimuli resulted in facilitation beyond that induced by the sheer presence of auditory-visual stimuli. Controlling for variation in physical energy replicated the advantage for multisensory looming stimuli. Finally, only looming stimuli exhibited a negative linear relationship between enhancement indices for detection speed and for subjective ratings. Maximal detection speed was attained when motion perception was already robust under unisensory conditions. The preferential integration of multisensory looming stimuli highlights that complex ethologically salient stimuli likely require synergistic cooperation between existing principles of multisensory integration. A new conceptualization of the neurophysiologic mechanisms mediating real-world multisensory perceptions and action is therefore supported.
Resumo:
Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.
Resumo:
Evidence from neuropsychological and activation studies (Clarke et al., 2oo0, Maeder et al., 2000) suggests that sound recognitionand localisation are processed by two anatomically and functionally distinct cortical networks. We report here on a case of a patientthat had an interruption of auditory information and we show: i) the effects of this interruption on cortical auditory processing; ii)the effect of the workload on activation pattern.A 36 year old man suffered from a small left mesencephalic haemotrhage, due to cavernous angioma; the let% inferior colliculuswas resected in the surgical approach of the vascular malformation. In the acute stage, the patient complained of auditoryhallucinations and of auditory loss in right ear, while tonal audiometry was normal. At 12 months, auditory recognition, auditorylocalisation (assessed by lTD and IID cues) and auditory motion perception were normal (Clarke et al., 2000), while verbal dichoticlistening was deficient on the right side.Sound recognition and sound localisation activation patterns were investigated with fMRI, using a passive and an activeparadigm. In normal subjects, distinct cortical networks were involved in sound recognition and localisation, both in passive andactive paradigm (Maeder et al., 2OOOa, 2000b).Passive listening of environmental and spatial stimuli as compared to rest strongly activated right auditory cortex, but failed toactivate left primary auditory cortex. The specialised networks for sound recognition and localisation could not be visual&d onthe right and only minimally on the left convexity. A very different activation pattern was obtained in the active condition wherea motor response was required. Workload not only increased the activation of the right auditory cortex, but also allowed theactivation of the left primary auditory cortex. The specialised networks for sound recognition and localisation were almostcompletely present in both hemispheres.These results show that increasing the workload can i) help to recruit cortical region in the auditory deafferented hemisphere;and ii) lead to processing auditory information within specific cortical networks.References:Clarke et al. (2000). Neuropsychologia 38: 797-807.Mae.der et al. (2OOOa), Neuroimage 11: S52.Maeder et al. (2OOOb), Neuroimage 11: S33
Resumo:
BACKGROUND: Dizziness is a common symptom which is frequently due to either peripheral or central vestibular dysfunction. However, some patients may lack typical signs suggesting a vestibular or cerebellar lesion and they mostly complain of vertigo or posture imbalance induced by visual stimulation. The symptoms immediately improve either on cessation of the visual input or upon closure of the eyes. Such a presentation is typical of visual vertigo. PATIENTS AND METHODS: From 1993 to 2003, 242 patients were examined for either "vertigo" or "dizziness". The diagnosis of visual vertigo was based on both history and clinical examination and was present in 11 patients. RESULTS: Visual vertigo was diagnosed in 11/242 patients (4.5 %). Age range was 31 - 77 years (mean 47 years) with a sex ratio of 8 females for 3 males. Neuro-ophthalmological examination was normal in all cases. CONCLUSIONS: Visual vertigo is not a rare condition but the disease is underdiagnosed. The symptoms result from a mismatch between vestibular, proprioceptive and visual inputs. Neuro-ophthalmological, neurological and neuro-otological examination are often normal or not relevant and the diagnosis is largely based on history. It is important to recognize this entity because the symptoms might improve if the patients are treated with psycho-motor rehabilitation.
Resumo:
Purpose: To investigate the accuracy of 4 clinical instruments in the detection of glaucomatous damage. Methods: 102 eyes of 55 test subjects (Age mean = 66.5yrs, range = [39; 89]) underwent Heidelberg Retinal Tomography (HRTIII), (disc area<2.43); and standard automated perimetry (SAP) using Octopus (Dynamic); Pulsar (TOP); and Moorfields Motion Displacement Test (MDT) (ESTA strategy). Eyes were separated into three groups 1) Healthy (H): IOP<21mmHg and healthy discs (clinical examination), 39 subjects, 78 eyes; 2) Glaucoma suspect (GS): Suspicious discs (clinical examination), 12 subjects, 15 eyes; 3) Glaucoma (G): progressive structural or functional loss, 14 subjects, 20 eyes. Clinical diagnostic precision was examined using the cut-off associated with the p<5% normative limit of MD (Octopus/Pulsar), PTD (MDT) and MRA (HRT) analysis. The sensitivity, specificity and accuracy were calculated for each instrument. Results: See table Conclusions: Despite the advantage of defining glaucoma suspects using clinical optic disc examination, the HRT did not yield significantly higher accuracy than functional measures. HRT, MDT and Octopus SAP yielded higher accuracy than Pulsar perimetry, although results did not reach statistical significance. Further studies are required to investigate the structure-function correlations between these instruments.
Resumo:
Résumé: La thèse que nous présentons s'intéresse aux phénomènes d'attribution d'intentions hostiles. Dodge (1980) observe que les individus agressifs ont tendance, en situation ambiguë, à sur-attribuer des intentions hostiles à leurs pairs, ce qui induit des réponses agressives. Pour l'auteur, l'attribution d'intentions hostiles est un médiateur entre certaines caractéristiques personnelles (l'agressivité) des individus, et le type de réponses qu'ils apportent aux situations. Cependant, les informations concernant l'appartenance groupale des "pairs" ne sont jamais prises en compte dans leurs études. Si ce processus est perméable à l'influence des normes et croyances (Bègue et Muller, 2006), aucune étude ne met en évidence quel serait l'impact d'informations groupales sur l'élaboration des réponses aux situations, dans le cadre de ce modèle. L'objectif de cette thèse est de montrer que l'attribution d'intentions hostiles peut être envisagée comme un processus agissant également à un niveau intergroupes et donc prenant en compte des informations groupales sur les individus. En s'inspirant du modèle de Dodge, nous avons émis l'hypothèse que les logiques intergroupes intervenaient dans l'interprétation des intentions des acteurs impliqués dans les interactions, afin de produire une réponse adaptée aux logiques intergroupes. Afin de tester cette hypothèse, nous avons suivi trois axes de recherches: Dans le premier de ces axes, nous avons introduit, dans le paradigme de Dodge, des informations .sur l'appartenance groupale des protagonistes de l'interaction (endogroupe vs exogroupe). Nous avons montré que le type de situation (ambiguë vs hostile) est moins important que l'information groupale dans la production d'une réponse à la situation (Étude 1). En outre, nous avons mis en évidence des processus différents selon la position des individus dans leur groupe (Étude 2). Dans le second axe, nous avons montré que si les différences de statut entre groupes n'influençaient pas directement le modèle de Dodge, elles interagissaient avec l'appartenance groupale et la clarté de la situation au niveau de l'attribution d'intentions hostiles (étude 3) et des intentions comportementales (Ettide 4). Dans le troisième et deriúer axe, nous avons introduit l'attribution d'intentions hostiles dans un processus de dévalorisation d'une cible expliquant un échec par la discrimination (Kaiser et Miller, 2001; 2003). Nous avons alors montré que l'attribution d'intentions hostiles médiatisait le lien entre l'attribution mobilisée pour expliquer l'événement et l'évaluation de la cible (Étude 5), et que ce type d'attribution était spécifique, aux intentions comportementales agressives (Études 6). Nous avons alors conclu sur la dimension sociale de l'attribution d'intentions hostiles et sur le fait qu'il s'agissait d'un élément permettant la construction d'une représentation des interactions sociales. Abstract The present thesis focuses on the phenomena of hostile intents attribution. Dodge (1980) observes that in ambiguous situations, aggressive people tend to over attribute hostile intents to others. This attribution leads them to respond aggressively. According to the author, hostile intents attribution mediates the link between some personal characteristics (aggressiveness for example) of individuals and their responses to the situation. However information related to participants group membership is always neglected in these studies. Begue and Muller (2006) showed that some beliefs could moderate the interaction between aggressiveness and hostile intents attribution on behaviors, but no study exhibited evidence of a similar effect with social information. The aim of this thesis is to show that hostile intents attribution needs to be considered at an intergroup level by taking into account people's group ineinbership. Based on the Dodge model, we formulated the hypothesis that intergroup strategies had an impact on actors' intents interpretations which in return should lead to different but adapted reactions to the situation. To test this hypothesis, three lines of research were developed. In the first line, we introduced, in the Dodge's paradigm, some information about the participants group membership (ingroup vs outgroup). We showed that when elaborating a response to a specific situation its nature (ambiguous vs hostile) had less impact than group membership information (Study 1). In addition, we highlighted some different processes according to the position of individuals in their group (Study 2). In the second line, we showed that if the differences between groups status didn't influence the Dodge model, they interacted with group membership and situation nature to influence hostile intents attribution (Study 3) and behaviors intents (Study 4). In the last line of research, we introduced hostile intents attribution within the process of derogation of a target explaining its failure by discrimination (Kaiser and Miller, 2001; 2003). We showed that hostile intents attribution mediated the link between the attibution mobilized to explain the failure and the derogation of the target (Study 5), and that this attribution type was specifically linked to aggressive behavior intents (Study 6). We finally concluded that hostile intents attribution imply an important social dimension which needs to be taken into account because involved in the construction of a representation of social interactions.
Resumo:
The essays in this volume, contributions to an international symposium at the University of Lausanne in June 1998, represent the perception of the elements as a framework for the history of religions (Maya Burger), exemplified by the Hindu traditions. Each element is treated by a specialist in a different academic field in order to bring out a variety of approaches important to the discipline of the history of religion. Ether (akasa) was assigned to philosophy (Wilhelm Halbfass), wind to the history of religion (Bettina Bäumer), fire to classical philology (Peter Schreiner), water to a specialist on Indian medicine (Arion Rosu) and earth to anthropology (Gabriella Eichinger Ferro-Luzzi, specializing on Tamil literature). Les articles du présent volume, issus d'un symposium international ayant eu lieu à l'Université de Lausanne en juin 1998, présentent la perception des éléments comme base de recherche de l'étude des religions (Maya Burger), exemplifiée à l'aide des traditions hindoues. Chaque élément est traité par un spécialiste d'une discipline académique particulière dans le but de souligner la variété des approches nécessaire à la discipline d'histoire des religions. L'éther (akasa) a été considéré sous l'angle de la philosophie (Wilhelm Halbfass), le vent sous celui de l'histoire des religions (Bettina Bäumer), le feu sous celui de la philologie classique (Peter Schreiner), l'eau par un spécialiste de la médecine indienne (Arion Rosu) et la terre sous l'angle de l'anthropologie (Gabriella Eichinger Ferro-Luzzi, se concentrant sur la littérature tamoule).
Resumo:
Phototropism is an adaptive response allowing plants to optimize photosynthetic light capture. This is achieved by asymmetric growth between the shaded and lit sides of the stimulated organ. In grass seedlings, the site of phototropin-mediated light perception is distinct from the site of bending; however, in dicotyledonous plants (e.g., Arabidopsis), spatial aspects of perception remain debatable. We use morphological studies and genetics to show that phototropism can occur in the absence of the root, lower hypocotyl, hypocotyl apex, and cotyledons. Tissue-specific expression of the phototropin1 (phot1) photoreceptor demonstrates that light sensing occurs in the upper hypocotyl and that expression of phot1 in the hypocotyl elongation zone is sufficient to enable a normal phototropic response. Moreover, we show that efficient phototropism occurs when phot1 is expressed from endodermal, cortical, or epidermal cells and that its local activation rapidly leads to a global response throughout the seedling. We propose that spatial aspects in the steps leading from light perception to growth reorientation during phototropism differ between grasses and dicots. These results are important to properly interpret genetic experiments and establish a model connecting light perception to the growth response, including cellular and morphological aspects.