211 resultados para Motion classification

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate the accuracy of 4 clinical instruments in the detection of glaucomatous damage. Methods: 102 eyes of 55 test subjects (Age mean = 66.5yrs, range = [39; 89]) underwent Heidelberg Retinal Tomography (HRTIII), (disc area<2.43); and standard automated perimetry (SAP) using Octopus (Dynamic); Pulsar (TOP); and Moorfields Motion Displacement Test (MDT) (ESTA strategy). Eyes were separated into three groups 1) Healthy (H): IOP<21mmHg and healthy discs (clinical examination), 39 subjects, 78 eyes; 2) Glaucoma suspect (GS): Suspicious discs (clinical examination), 12 subjects, 15 eyes; 3) Glaucoma (G): progressive structural or functional loss, 14 subjects, 20 eyes. Clinical diagnostic precision was examined using the cut-off associated with the p<5% normative limit of MD (Octopus/Pulsar), PTD (MDT) and MRA (HRT) analysis. The sensitivity, specificity and accuracy were calculated for each instrument. Results: See table Conclusions: Despite the advantage of defining glaucoma suspects using clinical optic disc examination, the HRT did not yield significantly higher accuracy than functional measures. HRT, MDT and Octopus SAP yielded higher accuracy than Pulsar perimetry, although results did not reach statistical significance. Further studies are required to investigate the structure-function correlations between these instruments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a semisupervised support vector machine (SVM) that integrates the information of both labeled and unlabeled pixels efficiently. Method's performance is illustrated in the relevant problem of very high resolution image classification of urban areas. The SVM is trained with the linear combination of two kernels: a base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between labeled and unlabeled examples. Results obtained on very high resolution (VHR) multispectral and hyperspectral images show the relevance of the method in the context of urban image classification. Also, its simplicity and the few parameters involved make the method versatile and workable by unexperienced users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Difficult tracheal intubation assessment is an important research topic in anesthesia as failed intubations are important causes of mortality in anesthetic practice. The modified Mallampati score is widely used, alone or in conjunction with other criteria, to predict the difficulty of intubation. This work presents an automatic method to assess the modified Mallampati score from an image of a patient with the mouth wide open. For this purpose we propose an active appearance models (AAM) based method and use linear support vector machines (SVM) to select a subset of relevant features obtained using the AAM. This feature selection step proves to be essential as it improves drastically the performance of classification, which is obtained using SVM with RBF kernel and majority voting. We test our method on images of 100 patients undergoing elective surgery and achieve 97.9% accuracy in the leave-one-out crossvalidation test and provide a key element to an automatic difficult intubation assessment system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: As part of the MicroArray Quality Control (MAQC)-II project, this analysis examines how the choice of univariate feature-selection methods and classification algorithms may influence the performance of genomic predictors under varying degrees of prediction difficulty represented by three clinically relevant endpoints. Methods: We used gene-expression data from 230 breast cancers (grouped into training and independent validation sets), and we examined 40 predictors (five univariate feature-selection methods combined with eight different classifiers) for each of the three endpoints. Their classification performance was estimated on the training set by using two different resampling methods and compared with the accuracy observed in the independent validation set. Results: A ranking of the three classification problems was obtained, and the performance of 120 models was estimated and assessed on an independent validation set. The bootstrapping estimates were closer to the validation performance than were the cross-validation estimates. The required sample size for each endpoint was estimated, and both gene-level and pathway-level analyses were performed on the obtained models. Conclusions: We showed that genomic predictor accuracy is determined largely by an interplay between sample size and classification difficulty. Variations on univariate feature-selection methods and choice of classification algorithm have only a modest impact on predictor performance, and several statistically equally good predictors can be developed for any given classification problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare the impact of meeting specific classification criteria [modified New York (mNY), European Spondyloarthropathy Study Group (ESSG), and Assessment of SpondyloArthritis international Society (ASAS) criteria] on anti-tumor necrosis factor (anti-TNF) drug retention, and to determine predictive factors of better drug survival. All patients fulfilling the ESSG criteria for axial spondyloarthritis (SpA) with available data on the axial ASAS and mNY criteria, and who had received at least one anti-TNF treatment were retrospectively retrieved in a single academic institution in Switzerland. Drug retention was computed using survival analysis (Kaplan-Meier), adjusted for potential confounders. Of the 137 patients classified as having axial SpA using the ESSG criteria, 112 also met the ASAS axial SpA criteria, and 77 fulfilled the mNY criteria. Drug retention rates at 12 and 24 months for the first biologic therapy were not significantly different between the diagnostic groups. Only the small ASAS non-classified axial SpA group (25 patients) showed a nonsignificant trend toward shorter drug survival. Elevated CRP level, but not the presence of bone marrow edema on magnetic resonance imaging (MRI) scans, was associated with significantly better drug retention (OR 7.9, ICR 4-14). In this cohort, anti-TNF drug survival was independent of the classification criteria. Elevated CRP level, but not positive MRI, was associated with better drug retention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke. METHODS: Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions <0.5 cm in minimal diameter and hemodynamic instability. IVIM imaging was performed at 3 T, using a standard spin-echo Stejskal-Tanner pulsed gradients diffusion-weighted sequence, using 16 b values from 0 to 900 s/mm(2). Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region. RESULTS: IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 · 10(-6)) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 · 10(-4) vs. 7.5 ± 0.86 · 10(-4) mm(2)/s, p = 1.3 · 10(-20)). CONCLUSION: IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image quality in magnetic resonance imaging (MRI) is considerably affected by motion. Therefore, motion is one of the most common sources of artifacts in contemporary cardiovascular MRI. Such artifacts in turn may easily lead to misinterpretations in the images and a subsequent loss in diagnostic quality. Hence, there is considerable research interest in strategies that help to overcome these limitations at minimal cost in time, spatial resolution, temporal resolution, and signal-to-noise ratio. This review summarizes and discusses the three principal sources of motion: the beating heart, the breathing lungs, and bulk patient movement. This is followed by a comprehensive overview of commonly used compensation strategies for these different types of motion. Finally, a summary and an outlook are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Individual signs and symptoms are of limited value for the diagnosis of influenza. Objective To develop a decision tree for the diagnosis of influenza based on a classification and regression tree (CART) analysis. Methods Data from two previous similar cohort studies were assembled into a single dataset. The data were randomly divided into a development set (70%) and a validation set (30%). We used CART analysis to develop three models that maximize the number of patients who do not require diagnostic testing prior to treatment decisions. The validation set was used to evaluate overfitting of the model to the training set. Results Model 1 has seven terminal nodes based on temperature, the onset of symptoms and the presence of chills, cough and myalgia. Model 2 was a simpler tree with only two splits based on temperature and the presence of chills. Model 3 was developed with temperature as a dichotomous variable (≥38°C) and had only two splits based on the presence of fever and myalgia. The area under the receiver operating characteristic curves (AUROCC) for the development and validation sets, respectively, were 0.82 and 0.80 for Model 1, 0.75 and 0.76 for Model 2 and 0.76 and 0.77 for Model 3. Model 2 classified 67% of patients in the validation group into a high- or low-risk group compared with only 38% for Model 1 and 54% for Model 3. Conclusions A simple decision tree (Model 2) classified two-thirds of patients as low or high risk and had an AUROCC of 0.76. After further validation in an independent population, this CART model could support clinical decision making regarding influenza, with low-risk patients requiring no further evaluation for influenza and high-risk patients being candidates for empiric symptomatic or drug therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work explores a concept for motion detection in brain MR examinations using high channel-count RF coil arrays. It applies ultrashort (<100 μsec) free induction decay signals, making use of the knowledge that motion induces variations in these signals when compared to a reference free induction decay signal. As a proof-of-concept, the method was implemented in a standard structural MRI sequence. The stability of the free induction decay-signal was verified in phantom experiments. Human experiments demonstrated that the observed variations in the navigator data provide a sensitive measure for detection of relevant and common subject motion patterns. The proposed methodology provides a means to monitor subject motion throughout a MRI scan while causing little or no impact on the sequence timing and image contrast. It could hence complement available motion detection and correction methods, thus further reducing motion sensitivity in MR applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a classification criteria for two-class Cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland, law enforcement authorities regularly ask laboratories to determine cannabis plant's chemotype from seized material in order to ascertain that the plantation is legal or not. In this study, the classification analysis is based on data obtained from the relative proportion of three major leaf compounds measured by gas-chromatography interfaced with mass spectrometry (GC-MS). The aim is to discriminate between drug type (illegal) and fiber type (legal) cannabis at an early stage of the growth. A Bayesian procedure is proposed: a Bayes factor is computed and classification is performed on the basis of the decision maker specifications (i.e. prior probability distributions on cannabis type and consequences of classification measured by losses). Classification rates are computed with two statistical models and results are compared. Sensitivity analysis is then performed to analyze the robustness of classification criteria.