21 resultados para Monosodium iodoacetate

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Monosodium urate monohydrate (MSU) crystal-induced interleukin-1β (IL-1β) secretion is a critical factor in the pathogenesis of gout. However, without costimulation by a proIL-1β-inducing factor, MSU crystals alone are insufficient to induce IL-1β secretion. The responsible costimulatory factors that act as a priming endogenous signal in vivo are not yet known. We undertook this study to analyze the costimulatory properties of myeloid-related protein 8 (MRP-8) and MRP-14 (endogenous Toll-like receptor 4 [TLR-4] agonists) in MSU crystal-induced IL-1β secretion and their relevance in gout. METHODS: MRP-8/MRP-14 was measured in paired serum and synovial fluid samples by enzyme-linked immunosorbent assay (ELISA) and localized in synovial tissue from gout patients by immunohistochemistry. Serum levels were correlated with disease activity, and MSU crystal-induced release of MRPs from human phagocytes was measured. Costimulatory effects of MRP-8 and MRP-14 on MSU crystal-induced IL-1β secretion from phagocytes were analyzed in vitro by ELISA, Western blotting, and polymerase chain reaction. The impact of MRP was tested in vivo in a murine MSU crystal-induced peritonitis model. RESULTS: MRP-8/MRP-14 levels were elevated in the synovium, tophi, and serum of patients with gout and correlated with disease activity. MRP-8/MRP-14 was released by MSU crystal-activated phagocytes and increased MSU crystal-induced IL-1β secretion in a TLR-4-dependent manner. Targeted deletion of MRP-14 in mice led to a moderately reduced response of MSU crystal-induced inflammation in vivo. CONCLUSION: MRP-8 and MRP-14, which are highly expressed in gout, are enhancers of MSU crystal-induced IL-1β secretion in vitro and in vivo. These endogenous TLR-4 ligands released by activated phagocytes contribute to the maintenance of inflammation in gout.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most research in gout has concentrated on the proinflammatory mechanisms to explain the inflammation that is generated when leucocytes are in contact with monosodium urate crystals. However, the episodic nature of gout and the absence of inflammation even when crystals are present suggest that there are natural counter-regulatory mechanisms to limit the inflammatory response. Gagné and colleagues showed that myeloid inhibitory C-type lectin, a C-type lectin inhibitory receptor expressed on neutrophils, modulates monosodium urate-induced neutrophil responses in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gout is the most common form of inflammatory arthritis in the elderly. In the last two decades, both hyperuricemia and gout have increased markedly and similar trends in the epidemiology of the metabolic syndrome have been observed. Recent studies provide new insights into the transporters that handle uric acid in the kidney as well as possible links between these transporters, hyperuricemia, and hypertension. The treatment of established hyperuricemia has also seen new developments. Febuxostat and PEG-uricase are two novel treatments that have been evaluated and shown to be highly effective in the management of hyperuricemia, thus enlarging the therapeutic options available to lower uric acid levels. Monosodium urate (MSU) crystals are potent inducers of inflammation. Within the joint, they trigger a local inflammatory reaction, neutrophil recruitment, and the production of pro-inflammatory cytokines as well as other inflammatory mediators. Experimentally, the uptake of MSU crystals by monocytes involves interactions with components of the innate immune system, namely Toll-like receptor (TLR)-2, TLR-4, and CD14. Intracellularly, MSU crystals activate multiple processes that lead to the formation of the NALP-3 (NACHT, LRR, and pyrin domain-containing-3) inflammasome complex that in turn processes pro-interleukin (IL)-1 to yield mature IL-1 beta, which is then secreted. The inflammatory effects of MSU are IL-1-dependent and can be blocked by IL-1 inhibitors. These advances in the understanding of hyperuricemia and gout provide new therapeutic targets for the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old chick embryos were exposed to normoxia (30 min), anoxia (30 min), and hyperoxic reoxygenation (60 min). The time course of ROS production in the whole heart and in the atria, ventricle, and outflow tract was established using lucigenin-enhanced chemiluminescence. Cardiac rhythm, conduction, and arrhythmias were determined. The activity of superoxide dismutase, catalase, gutathione reductase, and glutathione peroxidase as well as the content of reduced and oxidized glutathione were measured. The relative contribution of the ROS-generating systems was assessed by inhibition of mitochondrial complexes I and III (rotenone and myxothiazol), NADPH oxidases (diphenylene iodonium and apocynine), and nitric oxide synthases (N-monomethyl-l-arginine and N-iminoethyl-l-ornithine). The effects of glycolysis inhibition (iodoacetate), glucose deprivation, glycogen depletion, and lactate accumulation were also investigated. In untreated hearts, ROS production peaked at 10.8 ± 3.3, 9 ± 0.8, and 4.8 ± 0.4 min (means ± SD; n = 4) of reoxygenation in the atria, ventricle, and outflow tract, respectively, and was associated with arrhythmias. Functional recovery was complete after 30-40 min. At reoxygenation, 1) the respiratory chain and NADPH oxidases were the main sources of ROS in the atria and outflow tract, respectively; 2) glucose deprivation decreased, whereas glycogen depletion increased, oxidative stress; 3) lactate worsened oxidant stress via NADPH oxidase activation; 4) glycolysis blockade enhanced ROS production; 5) no nitrosative stress was detectable; and 6) the glutathione redox cycle appeared to be a major antioxidant system. Thus, the glycolytic pathway plays a predominant role in reoxygenation-induced oxidative stress during early cardiogenesis. The relative contribution of mitochondria and extramitochondrial systems to ROS generation varies from one region to another and throughout reoxygenation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how uric acid crystals provoke inflammation is crucial to improving our management of acute gout. It is well known that urate crystals stimulate monocytes and macrophages to elaborate inflammatory cytokines, but the tissue response of the synovium is less well understood. Microarray analysis of mRNA expression by these lining cells may help to delineate the genes that are modulated. Employing a murine air-pouch model, a number of genes expressed by innate immune cells were found to be rapidly upregulated by monosodium urate crystals. These findings provide new research avenues to investigate the physiopathology of gouty inflammation, and may eventually lead to new therapeutic targets in acute gout.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypothalamic damage induced by neonatal treatment with monosodium l-glutamate (MSG) induces several metabolic abnormalities, resulting in a rat hyperleptinemic-hyperadipose phenotype. This study was conducted to explore the impact of the neonatal MSG treatment, in the adult (120 days old) female rat on: (a) the in vivo and in vitro mineralocorticoid responses to ACTH and angiotensin II (AII); (b) the effect of leptin on ACTH- and AII-stimulated mineralocorticoid secretions by isolated corticoadrenal cells; and (c) abdominal adiposity characteristics. Our data indicate that, compared with age-matched controls, MSG rats displayed: (1) enhanced and reduced mineralocorticoid responses to ACTH and AII treatments, respectively, effects observed in both in vivo and in vitro conditions; (2) adrenal refractoriness to the inhibitory effect of exogenous leptin on ACTH-stimulated aldosterone output by isolated adrenocortical cells; and (3) distorted omental adiposity morphology and function. This study supports that the adult hyperleptinemic MSG female rat is characterized by enhanced ACTH-driven mineralocorticoid function, impaired adrenal leptin sensitivity, and disrupted abdominal adiposity function. MSG rats could counteract undesirable effects of glucocorticoid excess, by developing a reduced AII-driven mineralocorticoid function. Thus, chronic hyperleptinemia could play a protective role against ACTH-mediated allostatic loads in the adrenal leptin resistant, MSG female rat phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant scientific advances have been made over the last five years in the pathogenesis of hyperuricemia and understanding how monosodium urate (MSU) crystals provoke gout. New detection methods using ultrasound (US) have been evaluated and may become part of our routine diagnostic approach in a patient presenting with gout. This review will concentrate on the latest developments in the field, and discuss how these data may impact on clinical practice. Finally, a brief review of the therapeutic implications and new therapies that have become available will be presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor gamma (PPARgamma) plays a major role in fat tissue development and physiology. Mutations in the gene encoding this receptor have been associated to disorders in lipid metabolism. A thorough investigation of mice in which one PPARgamma allele has been mutated reveals that male PPARgamma heterozygous (PPARgamma +/-) mice exhibit a reduced body size associated with decreased body weight, reflecting lean mass reduction. This phenotype is reproduced when treating the mice with a PPARgamma- specific antagonist. Monosodium glutamate treatment, which induces weight gain and alters body growth in wild-type mice, further aggravates the growth defect of PPARgamma +/- mice. The levels of circulating GH and that of its downstream effector, IGF-I, are not altered in mutant mice. However, the IGF-I mRNA level is decreased in white adipose tissue (WAT) of PPARgamma +/- mice and is not changed by acute administration of recombinant human GH, suggesting an altered GH action in the mutant animals. Importantly, expression of the gene encoding the suppressor of cytokine signaling-2, which is an essential negative regulator of GH signaling, is strongly increased in the WAT of PPARgamma +/- mice. Although the relationship between the altered GH signaling in WAT and reduced body size remains unclear, our results suggest a novel role of PPARgamma in GH signaling, which might contribute to the metabolic disorder affecting insulin signaling in PPARgamma mutant mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gout is caused by the deposition of monosodium urate crystals (MSU) in tissue and provokes a local inflammatory reaction. It is the most common form of inflammatory arthritis in the elderly. The formation of MSU crystals is facilitated by hyperuricemia. In the last two decades, both hyperuricemia and gout have increased markedly and similar trends in the epidemiology of the metabolic syndrome have been observed. Recent studies provide new insights into uric acid metabolism in the kidneys as well as possible links between hyperuricemia and hypertension. MSU crystals provoke inflammation by activating leukocytes to produce inflammatory cytokines and other inflammatory mediators. The uptake of MSU crystals by monocytes involves interactions with Toll-like receptors (TLR-2 and TLR-4) and CD14, components of the innate immune system. Intracellularly, MSU crystals activate inflammasomes to activate pro-IL-1 (interleukin 1) processing to yield mature IL-1beta. The inflammatory effects of MSU are IL-1-dependent and can be blocked by IL-1 inhibitors. These advances provide new therapeutic targets to treat hyperuricemia and gout.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To determine the usefulness of computed tomography (CT), magnetic resonance imaging (MRI), and Doppler ultrasonography (US) in providing specific images of gouty tophi. METHODS: Four male patients with chronic gout with tophi affecting the knee joints (three cases) or the olecranon processes of the elbows (one case) were assessed. Crystallographic analyses of the synovial fluid or tissue aspirates of the areas of interest were made with polarising light microscopy, alizarin red staining, and x ray diffraction. CT was performed with a GE scanner, MR imaging was obtained with a 1.5 T Magneton (Siemens), and ultrasonography with colour Doppler was carried out by standard technique. RESULTS: Crystallographic analyses showed monosodium urate (MSU) crystals in the specimens of the four patients; hydroxyapatite and calcium pyrophosphate dihydrate (CPPD) crystals were not found. A diffuse soft tissue thickening was seen on plain radiographs but no calcifications or ossifications of the tophi. CT disclosed lesions containing round and oval opacities, with a mean density of about 160 Hounsfield units (HU). With MRI, lesions were of low to intermediate signal intensity on T(1) and T(2) weighting. After contrast injection in two cases, enhancement of the tophus was seen in one. Colour Doppler US showed the tophi to be hypoechogenic with peripheral increase of the blood flow in three cases. CONCLUSION: The MR and colour Doppler US images showed the tophi as masses surrounded by a hypervascular area, which cannot be considered as specific for gout. But on CT images, masses of about 160 HU density were clearly seen, which correspond to MSU crystal deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IL-1beta is a cytokine with major roles in inflammation and innate immune responses. IL-1beta is produced as an inactive proform that must be cleaved within the cell to generate biologically active IL-1beta. The enzyme caspase-1 catalyzes the reaction. Recent work showed that caspase-1 must be activated by a complex known as the inflammasome. The inflammasome comprises NALP, which is an intracellular receptor involved in innate immunity, and an ASC adapter that ensures caspase-1 recruitment to the receptor. The most extensively described inflammasome to date is formed by the NALP3 receptor within monocytes. Mutations involving the NALP3 gene cause hereditary periodic fever syndromes in humans. Increased inflammasome activity responsible for uncontrolled IL-1beta production occurs in these syndromes. Inhibition of the IL-1beta pathway by IL-1 receptor antagonist (anakinra) is a highly effective treatment for inherited periodic fever syndromes. A major role for inflammasome activity in the development of gout attacks was established recently. Urate monosodium crystals are specifically detected via the NALP3 inflammasome, which results in marked IL-1beta overproduction and initiation of an inflammatory response. This finding opens up new possibilities for the management of gouty attacks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac morphogenesis and function are known to depend on both aerobic and anaerobic energy-producing pathways. However, the relative contribution of mitochondrial oxidation and glycogenolysis, as well as the determining factors of oxygen demand in the distinct chambers of the embryonic heart, remains to be investigated. Spontaneously beating hearts isolated from stage 11, 20, and 24HH chick embryos were maintained in vitro under controlled metabolic conditions. O(2) uptake and glycogenolytic rate were determined in atrium, ventricle, and conotruncus in the absence or presence of glucose. Oxidative capacity ranged from 0.2 to 0.5 nmol O(2)/(h.microg protein), did not depend on exogenous glucose, and was the highest in atria at stage 20HH. However, the highest reserves of oxidative capacity, assessed by mitochondrial uncoupling, were found at the youngest stage and in conotruncus, representing 75 to 130% of the control values. At stage 24HH, glycogenolysis in glucose-free medium was 0.22, 0.17, and 0.04 nmol glucose U(h.microg protein) in atrium, ventricle, and conotruncus, respectively. Mechanical loading of the ventricle increased its oxidative capacity by 62% without altering glycogenolysis or lactate production. Blockade of glycolysis by iodoacetate suppressed lactate production but modified neither O(2) nor glycogen consumption in substrate-free medium. These findings indicate that atrium is the cardiac chamber that best utilizes its oxidative and glycogenolytic capacities and that ventricular wall stretch represents an early and major determinant of the O(2) uptake. Moreover, the fact that O(2) and glycogen consumptions were not affected by inhibition of glyceraldehyde-3-phosphate dehydrogenase provides indirect evidence for an active glycerol-phosphate shuttle in the embryonic cardiomyocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inflammasome is a proteolytic complex that regulates IL1β and IL-18 secretion in macrophages and dendritic cells. Its plays a vital role in the control of the inflammatory and cellular responses to infectious and danger signals and is an essential part of the innate immune system. Four different inflammasomes have been identified so far, and the NLRP3-inflammasome has been the best-studied in relation to human disease. Activation of the NLRP3-inflammasome by microcrystals, such as monosodium urate (MSU) and basic calcium phosphate (BCP) crystals, leads to IL1β release, which in turn triggers local inflammation. Dysfunction of the NLRP3-inflammasome due to mutations of the NLRP3 gene is the cause of the auto-inflammatory syndrome CAPS. The symptoms and signs of inflammation in both conditions respond to IL1 blockade. IL1 inhibitors have also been used successfully in other idiopathic inflammatory diseases, suggesting that dysregulated inflammasome activity contributes to the pathogenesis of multiple diseases, but the precise underlying mechanisms remain to be identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcrystals associated with joint diseases, namely monosodium urate, calcium pyrophosphate and basic calcium phosphate, can be considered as 'danger signals' to the innate immune system and provoke inflammation through inflammasome-dependent as well as inflammasome-independent pathways. Direct crystal membrane interactions can also lead to cell activation. The result is the generation of IL-1β and other pro-inflammatory cytokines. The primacy of IL-1β in the case of gouty inflammation has been demonstrated by the efficacy of IL-1 inhibitors in clinical studies. These findings may be relevant to other diseases where crystal formation is found, such as OA and atherosclerosis.