2 resultados para Monomer units
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Red blood cell-derived microparticles (RMPs) are small phospholipid vesicles shed from RBCs in blood units, where they accumulate during storage. Because microparticles are bioactive, it could be suggested that RMPs are mediators of posttransfusion complications or, on the contrary, constitute a potential hemostatic agent. STUDY DESIGN AND METHODS: This study was performed to establish the impact on coagulation of RMPs isolated from blood units. Using calibrated automated thrombography, we investigated whether RMPs affect thrombin generation (TG) in plasma. RESULTS: We found that RMPs were not only able to increase TG in plasma in the presence of a low exogenous tissue factor (TF) concentration, but also to initiate TG in plasma in absence of exogenous TF. TG induced by RMPs in the absence of exogenous TF was neither affected by the presence of blocking anti-TF nor by the absence of Factor (F)VII. It was significantly reduced in plasma deficient in FVIII or F IX and abolished in FII-, FV-, FX-, or FXI-deficient plasma. TG was also totally abolished when anti-XI 01A6 was added in the sample. Finally, neither Western blotting, flow cytometry, nor immunogold labeling allowed the detection of traces of TF antigen. In addition, RMPs did not comprise polyphosphate, an important modulator of coagulation. CONCLUSIONS: Taken together, our data show that RMPs have FXI-dependent procoagulant properties and are able to initiate and propagate TG. The anionic surface of RMPs might be the site of FXI-mediated TG amplification and intrinsic tenase and prothrombinase complex assembly.
Resumo:
Pseudomonas aeruginosa is one of the leading nosocomial pathogens in intensive care units (ICUs). The source of this microorganism can be either endogenous or exogenous. The proportion of cases as a result of transmission is still debated, and its elucidation is important for implementing appropriate control measures. To understand the relative importance of exogenous vs. endogenous sources of P. aeruginosa, molecular typing was performed on all available P. aeruginosa isolated from ICU clinical and environmental specimens in 1998, 2000, 2003, 2004 and 2007. Patient samples were classified according to their P. aeruginosa genotypes into three categories: (A) identical to isolate from faucet; (B) identical to at least one other patient sample and not found in faucet; and (C) unique genotype. Cases in categories A and B were considered as possibly exogenous, and cases in category C as possibly endogenous. A mean of 34 cases per 1000 admissions per year were found to be colonized or infected by P. aeruginosa. Higher levels of faucet contamination were correlated with a higher number of cases in category A. The number of cases in category B varied from 1.9 to 20 cases per 1000 admissions. This number exceeded 10/1000 admissions on three occasions and was correlated with an outbreak on one occasion. The number of cases considered as endogenous (category C) was stable and independent of the number of cases in categories A and B. The present study shows that repeated molecular typing can help identify variations in the epidemiology of P. aeruginosa in ICU patients and guide infection control measures.