244 resultados para Modulated logics
em Université de Lausanne, Switzerland
Resumo:
The aim of this study is to perform a thorough comparison of quantitative susceptibility mapping (QSM) techniques and their dependence on the assumptions made. The compared methodologies were: two iterative single orientation methodologies minimizing the l2, l1TV norm of the prior knowledge of the edges of the object, one over-determined multiple orientation method (COSMOS) and anewly proposed modulated closed-form solution (MCF). The performance of these methods was compared using a numerical phantom and in-vivo high resolution (0.65mm isotropic) brain data acquired at 7T using a new coil combination method. For all QSM methods, the relevant regularization and prior-knowledge parameters were systematically changed in order to evaluate the optimal reconstruction in the presence and absence of a ground truth. Additionally, the QSM contrast was compared to conventional gradient recalled echo (GRE) magnitude and R2* maps obtained from the same dataset. The QSM reconstruction results of the single orientation methods show comparable performance. The MCF method has the highest correlation (corrMCF=0.95, r(2)MCF =0.97) with the state of the art method (COSMOS) with additional advantage of extreme fast computation time. The l-curve method gave the visually most satisfactory balance between reduction of streaking artifacts and over-regularization with the latter being overemphasized when the using the COSMOS susceptibility maps as ground-truth. R2* and susceptibility maps, when calculated from the same datasets, although based on distinct features of the data, have a comparable ability to distinguish deep gray matter structures.
Resumo:
Background: To assess the early clinical outcomes and toxicities in patients treated with high precision radiation therapy (RT) consisting of helical tomotherapy (HT) or intensity-modulated radiation therapy (IMRT) for anal cancer. Materials and Methods: Since March 2006, 30 patients with stage I-IIIB anal squamous-cell carcinoma were treated curatively by IMRT or HT alone (n = 2) or by concomitant chemotherapy and IMRT or HT (n = 28). Median age was 59 years (range, 36−83 years) and the female/male ratio was 2.3 (21/9). Primary tumor site was anal canal, anal margin, or both in 26, 1, and 3 patients, respectively. Anal tumor, pelvic and inguinal nodes were irradiated with a median dose of 36 Gy using HT, or 5- or 7-field IMRT in 18 and 12 patients, respectively; After a planned gap of 1−2 weeks (median 1 week), a median boost dose of 23.4 Gwas delivered to the tumor and/or involved nodes using 3DRT (n = 24) or HT/IMRT (n = 6). The total delivered dose ranged between 59.4 and 64.8 Gy (median, 59.4 Gy). Concomitant chemotherapy consisted of mitomycin C alone (n = 1), mitomycin C and 5-fluorouracil (n = 17) or capecitabin (n = 10) in 28 patients. Common Terminology Criteria for Adverse Events v3.0 scale was used to score acute and late toxicities. Results: All but one patient, who developed progressive local and distant disease at the end of RT, achieved a complete response. Twelve months following RT, one patient had a recurrence at the primary tumor site, salvaged with brachytherapy. After a median follow-up of 7.5 months (range, 1−35 months), no deaths were observed. The 2-year actuarial locoregional control and probability of disease control without colostomy rates were 82% and 79%, respectively. RT was well tolerated without any unplanned treatment interruptions. Grade 1 or 2 acute adverse events consisted of skin toxicity in 8 and 22 patients, diarrhea in 18 and 3 patients, and cystitis in 9 and 2 patients; respectively. Only one patient developed grade 3 mucosal necrosis at the end of the treatment, requiring diverting colostomy. No difference in terms of acute toxicity was observed between patients treated with HT or IMRT. None of the 22 patients with a follow-up of more than 3 months developed grade 3 or more late toxicity. Conclusions: Our preliminary results suggest that HT or IMRT combined with concomitant chemotherapy for anal cancer is effective, and associated with favorable rates of toxicity compared with historical series. Further follow-up is warranted to assess late toxicity.
Resumo:
To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).
Resumo:
The H(+)-gated acid-sensing ion channels (ASICs) are expressed in dorsal root ganglion (DRG) neurones. Studies with ASIC knockout mice indicated either a pro-nociceptive or a modulatory role of ASICs in pain sensation. We have investigated in freshly isolated rat DRG neurones whether neurones with different ASIC current properties exist, which may explain distinct cellular roles, and we have investigated ASIC regulation in an experimental model of neuropathic pain. Small-diameter DRG neurones expressed three different ASIC current types which were all preferentially expressed in putative nociceptors. Type 1 currents were mediated by ASIC1a homomultimers and characterized by steep pH dependence of current activation in the pH range 6.8-6.0. Type 3 currents were activated in a similar pH range as type 1, while type 2 currents were activated at pH < 6. When activated by acidification to pH 6.8 or 6.5, the probability of inducing action potentials correlated with the ASIC current density. Nerve injury induced differential regulation of ASIC subunit expression and selective changes in ASIC function in DRG neurones, suggesting a complex reorganization of ASICs during the development of neuropathic pain. In summary, we describe a basis for distinct cellular functions of different ASIC types in small-diameter DRG neurones.
Resumo:
Background: To report a single-center experience in 19 patients (pts) with anal canal cancer treated with helical tomotherapy (HT) and concurrent chemotherapy, and compare the dosimetric results with fixed-field intensitymodulated radiotherapy (IMRT) and 3D conformal radiotherapy (3D RT). Materials and Methods: Between 2007 and 2008, 19 consecutive pts were treated with HT and concurrent CT for anal canal cancer. Median age was 59 years (range, 38−83), and female/male ratio was 14/5. The majority of the pts had T2 or T3 tumours (68.4%), and 52.6% had positive lymph nodes. In all 19 pts, pelvic and inguinal nodes, and tumour irradiation was given using HT upto a median dose of 36 Gy (1.8 Gy/fr) followed by a 1-week gap. A boost dose of 23.4 Gy (1.8 Gy/fr) was delivered to the tumour and involved nodes using 3DRT (n = 12), HT (n = 6), or IMRT (n = 1). Simultaneous integrated boost was used in none of the pts. All but one patient with a T1N0 tumour received concomitant mitomycin/5- fluorouracil (n = 12) or mitomycin/capecitabin (n = 7) CT. Toxicity was scored according to the Common Terminology Criteria for Adverse Events (NCICTCAE v3.0). HT plans and treatments were generated using Tomotherapy, Inc., software and hardware; and 3D or IMRT boost plans with the CMS treatment planning system (TPS), using 6−18 MV photons from a Siemens Primus accelerator. For dosimetric comparison, computed tomography data sets of 10 pts were imported into the TPS, and 3D and 5-field step-andshoot IMRT plans were generated for each case. Plans were optimized with the aim of assessing organs at risk (OAR) and healthy-tissue sparing while enforcing highly conformal target coverage, and evaluated by dose-volume histograms (DVH) of planning target volumes (PTV) and OAR. Results: With a median follow-up of 13 months (range, 3−18), all pts are alive and well; except one patient developing local recurrence at 12 months. No patient developed grade 3 or more acute toxicity. No unplanned treatment interruption was necessary because of toxicity. With 360-degree-of-freedom beam projection, HT showed an advantage over 3D or IMRT plans in terms of dose conformity around the PTV, and dose gradients were steeper outside the PTV, resulting in reduced doses to OARs. Using HT, acute toxicity was acceptable, and seemed to be better than historical standards. Conclusion: We conclude that HT combined with concurrent chemotherapy for anal canal cancer is effective and tolerable. Compared to 3DRT or 5-field IMRT, there is better conformity around the PTV, and OAR sparing.
Resumo:
This study was to evaluate the treatment dosimetry, efficacy and toxicity of intensity modulated radiation therapy (IMRT) and fractionated stereotactic radiotherapy (FSRT) in the management of infratentorial ependymoma. Between 1999 and 2007, seven children (median age, 3.1 years) with infratentorial ependymoma were planned with either IMRT (3 patients) or SFRT (4 patients), the latter after conventional posterior fossa irradiation. Two children underwent gross total resection. Median prescribed dose was 59.4 Gy (range, 55.8-60). The median follow-up for surviving patients was 4.8 years (range, 1.3-8). IMRT (median dose, 59.4 Gy) and FSRT (median dose, 55.8 Gy) achieved similar optimal target coverage. Percentages of maximum doses delivered to the cochleae (59.5 vs 85.0% Gy; P = 0.05) were significantly inferior with IMRT, when compared to FSRT planning. Percentages of maximum doses administered to the pituitary gland (38.2 vs 20.1%; P = 0.05) and optic chiasm (38.1 vs 14.1%; P = 0.001) were, however, significantly higher with IMRT, when compared to FSRT planning. No recurrences were observed at the last follow-up. The estimated 3-year progression-free survival and overall survival were 87.5 and 100%, respectively. No grade >1 acute toxicity was observed. Two patients presented late adverse events (grade 2 hypoacousia) during follow-up, without cognitive impairment. IMRT or FSRT for infratentorial ependymomas is effective and associated with a tolerable toxicity level. Both treatment techniques were able to capitalize their intrinsic conformal ability to deliver high-dose radiation. Larger series of patients treated with these two modalities will be necessary to more fully evaluate these delivery techniques.
Resumo:
Endogenous nitric oxide (NO) mediates pulmonary vasodilatation at birth, but inhaled NO fails to reduce pulmonary vascular resistance (PVR) in newborns with congenital diaphragmatic hernia (CDH). This study was designed to investigate the effects of ventilation, and the nature of its endogenous mediator, in fetal lambs with experimental CDH. Investigations at 138 days of gestation showed that ventilation markedly decreased PVR. Inhibition of NO synthesis reduced ventilation-induced pulmonary vasodilatation in vivo and increased in vitro isometric tension of vascular rings. Ventilation therefore reduces PVR at birth in lambs with CDH, and endogenous NO seems to contribute to this reduction.
Resumo:
Expression of laminin-5 alpha3, beta3 and gamma2 protein subunits was investigated in colorectal adenocarcinomas using immunostaining and confocal microscopy. The laminin-5 heterotrimer was found in basement membranes and as extracellular deposits in tumor stroma. In contrast to the alpha3 subunit, which was under-expressed, the gamma2 and beta3 subunits were detected in the cytoplasm of carcinoma cells dissociating (budding) from neoplastic tubules, suggestive of focal alterations in laminin-5 assembly and secretion. Laminin-5 gamma2 or beta3 subunit-reactive budding carcinoma cells expressed cytokeratins but not vimentin; they did not proliferate and were not apoptotic. Furthermore, expression of laminin-5 gamma2 and beta3 subunits in budding cells was associated with focal under-expression of the E-cadherin-beta-catenin complex. Results from xenograft experiments showed that budding activity in colorectal adenocarcinomas could be suppressed when these tumors grew at ectopic s.c. sites in nude mice. In vitro, cultured colon carcinoma cells, but not adenoma-derived tumor cells, shared the laminin-5 phenotype expressed by carcinoma cells in vivo. Using colon carcinoma cell lines implanted orthotopically and invading the cecum of nude mice, the laminin-5-associated budding was restored, indicating that this phenotype is not only determined by tumor cell properties but also dependent on the tissue micro-environment. Our results indicate that both laminin-5 alpha3 subunit expression and cell-cell cohesiveness are altered in budding carcinoma cells, which we consider to be actively invading. We propose that the local tissue micro-environment contributes to these events.
Resumo:
PURPOSE: To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65⁻/⁻ mouse model of Leber congenital amaurosis. METHODS: We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5⁻/⁻/Rpe65⁻/⁻). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin α subunit (Gnat1), and cone transducin α subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. RESULTS: No differences in the progression of retinal degeneration were observed between the Rpe65⁻/⁻ and Cspg5⁻/⁻/Rpe65⁻/⁻ mice. No retinal phenotype was detected in the late postnatal and adult Cspg5⁻/⁻ mice, when compared to the wild-type mice. CONCLUSIONS: Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65⁻/⁻ mice, no protective effect or any involvement of Cspg5 in disease progression was identified.
Resumo:
The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere.
Resumo:
Previous research has provided inconsistent results regarding the spatial modulation of auditory-somatosensory interactions. The present study reports three experiments designed to investigate the nature of these interactions in the space close to the head. Human participants made speeded detection responses to unimodal auditory, somatosensory, or simultaneous auditory-somatosensory stimuli. In Experiment 1, electrocutaneous stimuli were presented to either earlobe, while auditory stimuli were presented from the same versus opposite sides, and from one of two distances (20 vs. 70cm) from the participant's head. The results demonstrated a spatial modulation of auditory-somatosensory interactions when auditory stimuli were presented from close to the head. In Experiment 2, electrocutaneous stimuli were delivered to the hands, which were placed either close to or far from the head, while the auditory stimuli were again presented at one of two distances. The results revealed that the spatial modulation observed in Experiment 1 was specific to the particular body part stimulated (head) rather than to the region of space (i.e. around the head) where the stimuli were presented. The results of Experiment 3 demonstrate that sounds that contain high-frequency components are particularly effective in eliciting this auditory-somatosensory spatial effect. Taken together, these findings help to resolve inconsistencies in the previous literature and suggest that auditory-somatosensory multisensory integration is modulated by the stimulated body surface and acoustic spectra of the stimuli presented.
Resumo:
Substance P (SP), an undecapeptide belonging to the tachykinin family, is released during the activation of sensory nerves, and causes vasodilation, edema and pain through activation of tissular Neurokinin 1 receptors. SP proinflammatory effects are terminated by angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP), while the aminopeptidase dipeptidylpeptidase IV (DPPIV) can also play a role. The aim of this randomized, crossover, double-blind study was to assess the cutaneous vasoreactivity (flare and wheal reaction, burning pain sensation) to intradermal injection of ascending doses of SP in six volunteers receiving a single therapeutic dose of the DPPIV inhibitor sitagliptin or a matching placebo. Cutaneous SP challenges produced the expected, dose-dependent flare and wheal response, while eliciting mild to moderate local pain sensation with little dose dependency. However, no differences were shown in the responses observed under sitagliptin compared with placebo, while the study would have been sufficiently powered to detect a clinically relevant increase in sensitivity to SP. The results of this pilot study are in line with proteolytic cleavage of SP by ACE and NEP compensating the blockade of DPPIV to prevent an augmentation of its proinflammatory action.
Resumo:
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.