2 resultados para Modern pollen rain

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Pollen and seed dispersal in herbaceous insect-pollinated plants are often restricted, inducing strong population structure. To what extent this influences mating within and among patches is poorly understood. This study investigates the influence of population structure on pollen performance using controlled pollinations and genetic markers. METHODS: Population structure was investigated in a patchily distributed population of gynodioecious Silene vulgaris in Switzerland using polymorphic microsatellite markers. Experimental pollinations were performed on 21 hermaphrodite recipients using pollen donors at three spatial scales: (a) self-pollination; (b) within-patch cross-pollinations; and (c) between-patch cross-pollinations. Pollen performance was then compared with respect to crossing distance. KEY RESULTS: The population of S. vulgaris was characterized by a high degree of genetic sub-structure, with neighbouring plants more related to one another than to distant individuals. Inbreeding probably results from both selfing and biparental inbreeding. Pollen performance increased with distance between mates. Between-patch pollen performed significantly better than both self- and within-patch pollen donors. However, no significant difference was detected between self- and within-patch pollen donors. CONCLUSIONS: The results suggest that population structure in animal-pollinated plants is likely to influence mating patterns by favouring cross-pollinations between unrelated plants. However, the extent to which this mechanism could be effective as a pre-zygotic barrier preventing inbred mating depends on the patterns of pollinator foraging and their influence on pollen dispersal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although tissue engineering and cell therapies are becoming realistic approaches for medical therapeutics, it is likely that musculoskeletal applications will be among the first to benefit on a large scale. Cell sources for tissue engineering and cell therapies for tendon pathologies are reviewed with an emphasis on small defect tendon injuries as seen in the hand which could adapt well to injectable cell administration. Specifically, cell sources including tenocytes, tendon sheath fibroblasts, bone marrow or adipose-derived stem cells, amniotic cells, placenta cells and platelet-derivatives have been proposed to enhance tendon regeneration. The associated advantages and disadvantages for these different strategies will be discussed and evolving regulatory requirements for cellular therapies will also be addressed. Human progenitor tenocytes, along with their clinical cell banking potential, will be presented as an alternative cell source solution. Similar cell banking techniques have already been described with other progenitor cell types in the 1950's for vaccine production, and these "old" cell types incite potentially interesting therapeutic options that could be improved with modern innovation for tendon regeneration and repair.