46 resultados para Model knowledge conversion of Nonaka
em Université de Lausanne, Switzerland
Resumo:
AIMS: Experimental autoimmune myocarditis (EAM) model mirrors important mechanisms of inflammatory dilated cardiomyopathy (iDCM). In EAM, inflammatory CD133(+) progenitors are a major cellular source of cardiac myofibroblasts in the post-inflammatory myocardium. We hypothesized that exogenous delivery of macrophage-colony-stimulating factor (M-CSF) can stimulate macrophage lineage differentiation of inflammatory progenitors and, therefore, prevent their naturally occurring myofibroblast fate in EAM. METHODS AND RESULTS: EAM was induced in wild-type (BALB/c) and nitric oxide synthase 2-deficient (Nos2(-/-)) mice and CD133(+) progenitors were isolated from inflamed hearts. In vitro, M-CSF converted inflammatory CD133(+) progenitors into nitric oxide-producing F4/80(+) macrophages and prevented transforming growth factor-β-mediated myofibroblast differentiation. Importantly, only a subset of heart-infiltrating CD133(+) progenitors expresses macrophage-specific antigen F4/80 in EAM. These CD133(+)/F4/80(hi) cells show impaired myofibrogenic potential compared with CD133(+)/F4/80(-) cells. M-CSF treatment of wild-type mice with EAM at the peak of disease markedly increased CD133(+)/F4/80(hi) cells in the myocardium, and CD133(+) progenitors isolated from M-CSF-treated mice failed to differentiate into myofibroblasts. In contrast, M-CSF was not effective in converting CD133(+) progenitors from inflamed hearts of Nos2(-/-) mice into macrophages, and M-CSF treatment did not result in increased CD133(+)/F4/80(hi) cell population in hearts of Nos2(-/-) mice. Accordingly, M-CSF prevented post-inflammatory fibrosis and left ventricular dysfunction in wild-type but not in Nos2(-/-) mice. CONCLUSION: Active and NOS2-dependent induction of macrophage lineage differentiation abrogates the myofibrogenic potential of heart-infiltrating CD133(+) progenitors. Modulating the in vivo differentiation fate of specific progenitors might become a novel approach for the treatment of inflammatory heart diseases.
Resumo:
The recent developments in high magnetic field 13C magnetic resonance spectroscopy with improved localization and shimming techniques have led to important gains in sensitivity and spectral resolution of 13C in vivo spectra in the rodent brain, enabling the separation of several 13C isotopomers of glutamate and glutamine. In this context, the assumptions used in spectral quantification might have a significant impact on the determination of the 13C concentrations and the related metabolic fluxes. In this study, the time domain spectral quantification algorithm AMARES (advanced method for accurate, robust and efficient spectral fitting) was applied to 13 C magnetic resonance spectroscopy spectra acquired in the rat brain at 9.4 T, following infusion of [1,6-(13)C2 ] glucose. Using both Monte Carlo simulations and in vivo data, the goal of this work was: (1) to validate the quantification of in vivo 13C isotopomers using AMARES; (2) to assess the impact of the prior knowledge on the quantification of in vivo 13C isotopomers using AMARES; (3) to compare AMARES and LCModel (linear combination of model spectra) for the quantification of in vivo 13C spectra. AMARES led to accurate and reliable 13C spectral quantification similar to those obtained using LCModel, when the frequency shifts, J-coupling constants and phase patterns of the different 13C isotopomers were included as prior knowledge in the analysis.
Resumo:
Human Fas ligand (L) (CD95L) and tumor necrosis factor (TNF)-alpha undergo metalloproteinase-mediated proteolytic processing in their extracellular domains resulting in the release of soluble trimeric ligands (soluble [s]FasL, sTNF-alpha) which, in the case of sFasL, is thought to be implicated in diseases such as hepatitis and AIDS. Here we show that the processing of sFasL occurs between Ser126 and Leu127. The apoptotic-inducing capacity of naturally processed sFasL was reduced by >1,000-fold compared with membrane-bound FasL, and injection of high doses of recombinant sFasL in mice did not induce liver failure. However, soluble FasL retained its capacity to interact with Fas, and restoration of its cytotoxic activity was achieved both in vitro and in vivo with the addition of cross-linking antibodies. Similarly, the marginal apoptotic activity of recombinant soluble TNF-related apoptosis-inducing ligand (sTRAIL), another member of the TNF ligand family, was greatly increased upon cross-linking. These results indicate that the mere trimerization of the Fas and TRAIL receptors may not be sufficient to trigger death signals. Thus, the observation that sFasL is less cytotoxic than membrane-bound FasL may explain why in certain types of cancer, systemic tissue damage is not detected, even though the levels of circulating sFasL are high.
Resumo:
Here, we report suboptimal efavirenz exposure in an obese patient treated with the standard 600 mg dose. Tripling the dose allowed attainment of therapeutic efavirenz concentrations. We developed an in vitro-in vivo extrapolation model to quantify dose requirements in obese individuals. Obesity represents a risk factor for antiretroviral therapy underdosing.
Resumo:
The present study examines the Five-Factor Model (FFM) of personality and locus of control in French-speaking samples in Burkina Faso (N = 470) and Switzerland (Ns = 1,090, 361), using the Revised NEO Personality Inventory (NEO-PI-R) and Levenson's Internality, Powerful others, and Chance (IPC) scales. Alpha reliabilities were consistently lower in Burkina Faso, but the factor structure of the NEO-PI-R was replicated in both cultures. The intended three-factor structure of the IPC could not be replicated, although a two-factor solution was replicable across the two samples. Although scalar equivalence has not been demonstrated, mean level comparisons showed the hypothesized effects for most of the five factors and locus of control; Burkinabè scored higher in Neuroticism than anticipated. Findings from this African sample generally replicate earlier results from Asian and Western cultures, and are consistent with a biologically-based theory of personality.
Global connexity and circulation of knowledge. Aspects of Anthropology of Knowledge in Latin America
Resumo:
Colony social organization in the fire ant Solenopsis invicta appears to be under strong genetic control. In the invasive USA range, polygyny (multiple queens per colony) is marked by the presence of the Gp-9(b) allele in most of a colony's workers, whereas monogyny (single queen per colony) is associated with the exclusive occurrence of the Gp-9(B) allele. Ross and Keller, Behav Ecol Sociobiol 51:287-295 (2002) experimentally manipulated social organization by cross-fostering queens into colonies of the alternate form, thereby changing adult worker Gp-9 genotype frequencies over time. Although these authors showed that social behavior switched predictably when the frequency of b-bearing adult workers crossed a threshold of 5-10%, the possibility that queen effects caused the conversions could not be excluded entirely. We addressed this problem by fostering polygyne brood into queenright monogyne colonies. All such treatment colonies switched social organization to become polygyne, coincident with their proportions of b-bearing workers exceeding 12%. Our results support the conclusion that polygyny in S. invicta is induced by a minimum frequency of colony workers carrying the b allele, and further confirm that its expression is independent of queen genotype or history, worker genotypes at genes not linked to Gp-9, and colony genetic diversity.
Resumo:
Secretory component (SC) represents the soluble ectodomain of the polymeric Ig receptor, a membrane protein that transports mucosal Abs across epithelial cells. In the protease-rich environment of the intestine, SC is thought to stabilize the associated IgA by unestablished molecular mechanisms. To address this question, we reconstituted SC-IgA complexes in vitro by incubating dimeric IgA (IgAd) with either recombinant human SC (rSC) or SC isolated from human colostral milk (SCm). Both complexes exhibited an identical degree of covalency when exposed to redox agents, peptidyl disulfide isomerase, and temperature changes. In cross-competition experiments, 50% inhibition of binding to IgAd was achieved at approximately 10 nM SC competitor. Western blot analysis of IgAd digested with intestinal washes indicated that the alpha-chain in IgAd was primarily split into a 40-kDa species, a phenomenon delayed in rSC- or SCm-IgAd complexes. In the same assay, either of the SCs was resistant to degradation only if complexed with IgAd. In contrast, the kappa light chain was not digested at all, suggesting that the F(ab')2 region was left intact. Accordingly, IgAd and SC-IgAd digestion products retained functionality as indicated by Ag reactivity in ELISA. Size exclusion chromatography under native conditions of digested IgAd and rSC-IgAd demonstrates that SC exerts its protective role in secretory IgA by delaying cleavage in the hinge/Fc region of the alpha-chain, not by holding together degraded fragments. The function of integral secretory IgA and F(ab')2 is discussed in terms of mucosal immune defenses.
Resumo:
Wnt and Notch signaling have long been established as strongly oncogenic in the mouse mammary gland. Aberrant expression of several Wnts and other components of this pathway in human breast carcinomas has been reported, but evidence for a causative role in the human disease has been missing. Here we report that increased Wnt signaling, as achieved by ectopic expression of Wnt-1, triggers the DNA damage response (DDR) and an ensuing cascade of events resulting in tumorigenic conversion of primary human mammary epithelial cells. Wnt-1-transformed cells have high telomerase activity and compromised p53 and Rb function, grow as spheres in suspension, and in mice form tumors that closely resemble medullary carcinomas of the breast. Notch signaling is up-regulated through a mechanism involving increased expression of the Notch ligands Dll1, Dll3, and Dll4 and is required for expression of the tumorigenic phenotype. Increased Notch signaling in primary human mammary epithelial cells is sufficient to reproduce some aspects of Wnt-induced transformation. The relevance of these findings for human breast cancer is supported by the fact that expression of Wnt-1 and Wnt-4 and of established Wnt target genes, such as Axin-2 and Lef-1, as well as the Notch ligands, such as Dll3 and Dll4, is up-regulated in human breast carcinomas.
Resumo:
This paper presents an account of considerations relevant to conversion of data in an administrative record system into categories compatible with the ICIDH. Existing information recorded for the Swiss disablement insurance scheme fairly readily generates impairment and disability data relating to the time of first contact with the scheme, and the means for conversion are illustrated. The system does not generate data relevant to handicap.
Resumo:
False identity documents represent a serious threat through their production and use in organized crime and by terrorist organizations. The present-day fight against this criminal problem and threats to national security does not appropriately address the organized nature of this criminal activity, treating each fraudulent document on its own during investigation and the judicial process, which causes linkage blindness and restrains the analysis capacity. Given the drawbacks of this case-by-case approach, this article proposes an original model in which false identity documents are used to inform a systematic forensic intelligence process. The process aims to detect links, patterns, and tendencies among false identity documents in order to support strategic and tactical decision making, thus sustaining a proactive intelligence-led approach to fighting identity document fraud and the associated organized criminality. This article formalizes both the model and the process, using practical applications to illustrate its powerful capabilities. This model has a general application and can be transposed to other fields of forensic science facing similar difficulties.
Resumo:
Modelling the shoulder's musculature is challenging given its mechanical and geometric complexity. The use of the ideal fibre model to represent a muscle's line of action cannot always faithfully represent the mechanical effect of each muscle, leading to considerable differences between model-estimated and in vivo measured muscle activity. While the musculo-tendon force coordination problem has been extensively analysed in terms of the cost function, only few works have investigated the existence and sensitivity of solutions to fibre topology. The goal of this paper is to present an analysis of the solution set using the concepts of torque-feasible space (TFS) and wrench-feasible space (WFS) from cable-driven robotics. A shoulder model is presented and a simple musculo-tendon force coordination problem is defined. The ideal fibre model for representing muscles is reviewed and the TFS and WFS are defined, leading to the necessary and sufficient conditions for the existence of a solution. The shoulder model's TFS is analysed to explain the lack of anterior deltoid (DLTa) activity. Based on the analysis, a modification of the model's muscle fibre geometry is proposed. The performance with and without the modification is assessed by solving the musculo-tendon force coordination problem for quasi-static abduction in the scapular plane. After the proposed modification, the DLTa reaches 20% of activation.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.