8 resultados para Model Approximation
em Université de Lausanne, Switzerland
Resumo:
An epidemic model is formulated by a reactionâeuro"diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation.
Resumo:
The weak selection approximation of population genetics has made possible the analysis of social evolution under a considerable variety of biological scenarios. Despite its extensive usage, the accuracy of weak selection in predicting the emergence of altruism under limited dispersal when selection intensity increases remains unclear. Here, we derive the condition for the spread of an altruistic mutant in the infinite island model of dispersal under a Moran reproductive process and arbitrary strength of selection. The simplicity of the model allows us to compare weak and strong selection regimes analytically. Our results demonstrate that the weak selection approximation is robust to moderate increases in selection intensity and therefore provides a good approximation to understand the invasion of altruism in spatially structured population. In particular, we find that the weak selection approximation is excellent even if selection is very strong, when either migration is much stronger than selection or when patches are large. Importantly, we emphasize that the weak selection approximation provides the ideal condition for the invasion of altruism, and increasing selection intensity will impede the emergence of altruism. We discuss that this should also hold for more complicated life cycles and for culturally transmitted altruism. Using the weak selection approximation is therefore unlikely to miss out on any demographic scenario that lead to the evolution of altruism under limited dispersal.
Resumo:
We have constructed a forward modelling code in Matlab, capable of handling several commonly used electrical and electromagnetic methods in a 1D environment. We review the implemented electromagnetic field equations for grounded wires, frequency and transient soundings and present new solutions in the case of a non-magnetic first layer. The CR1Dmod code evaluates the Hankel transforms occurring in the field equations using either the Fast Hankel Transform based on digital filter theory, or a numerical integration scheme applied between the zeros of the Bessel function. A graphical user interface allows easy construction of 1D models and control of the parameters. Modelling results are in agreement with other authors, but the time of computation is less efficient than other available codes. Nevertheless, the CR1Dmod routine handles complex resistivities and offers solutions based on the full EM-equations as well as the quasi-static approximation. Thus, modelling of effects based on changes in the magnetic permeability and the permittivity is also possible.
Resumo:
The main goal of this paper is to propose a convergent finite volume method for a reactionâeuro"diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.
Resumo:
We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from an Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling, and show that our numerical scheme is efficient and accurate.
Resumo:
Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in changing environments. Social interactions between population members may, however, require more cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hypotheses about the material payoff consequences of alternative action combinations. It is unclear in this context whether natural selection necessarily favours individuals to use information about payoffs associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games played over the individual's lifetime. We analyse through stochastic approximation theory and simulations the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs in particular under repeated cooperative interactions with the same partner. By contrast, we find that hypothetical reinforcement learners tend to be favoured under random interactions, but stable polymorphisms can also obtain where trial-and-error learners are maintained at a low frequency. We conclude that specific game structures can select for trial-and-error learning even in the absence of costs of cognition, which illustrates that cost-free increased cognition can be counterselected under social interactions.
Resumo:
We consider a spectrally-negative Markov additive process as a model of a risk process in a random environment. Following recent interest in alternative ruin concepts, we assume that ruin occurs when an independent Poissonian observer sees the process as negative, where the observation rate may depend on the state of the environment. Using an approximation argument and spectral theory, we establish an explicit formula for the resulting survival probabilities in this general setting. We also discuss an efficient evaluation of the involved quantities and provide a numerical illustration.