2 resultados para Mobile App

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a theoretical model to analyze the privacy issues around location based mobile business models. We report the results of an exploratory field experiment in Switzerland that assessed the factors driving user payoff in mobile business. We found that (1) the personal data disclosed has a negative effect on user payoff; (2) the amount of personalization available has a direct and positive effect, as well as a moderating effect on user payoff; (3) the amount of control over user's personal data has a direct and positive effect, as well as a moderating effect on user payoff. The results suggest that privacy protection could be the main value proposition in the B2C mobile market. From our theoretical model we derive a set of guidelines to design a privacy-friendly business model pattern for third-party services. We discuss four examples to show the mobile platform can play a key role in the implementation of these new business models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fragile X mental retardation protein (FMRP) regulates neuronal RNA metabolism, and its absence or mutations leads to the Fragile X syndrome (FXS). The β-amyloid precursor protein (APP) is involved in Alzheimer's disease, plays a role in synapse formation, and is upregulated in intellectual disabilities. Here, we show that during mouse synaptogenesis and in human FXS fibroblasts, a dual dysregulation of APP and the α-secretase ADAM10 leads to the production of an excess of soluble APPα (sAPPα). In FXS, sAPPα signals through the metabotropic receptor that, activating the MAP kinase pathway, leads to synaptic and behavioral deficits. Modulation of ADAM10 activity in FXS reduces sAPPα levels, restoring translational control, synaptic morphology, and behavioral plasticity. Thus, proper control of ADAM10-mediated APP processing during a specific developmental postnatal stage is crucial for healthy spine formation and function(s). Downregulation of ADAM10 activity at synapses may be an effective strategy for ameliorating FXS phenotypes.