16 resultados para Mn-Zn ferrites

em Université de Lausanne, Switzerland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The large Cerro de Pasco Cordilleran base metal deposit in central Peru is located on the eastern margin of a middle Miocene diatreme-dome complex and comprises two mineralization stages. The first stage consists of a large pyrite-quartz body replacing Lower Mesozoic Pucara carbonate rocks and, to a lesser extent, diatreme breccia. This body is composed of pyrite with pyrrhotite inclusions, quartz, and black and red chalcedony (containing hypogene hematite). At the contact with the pyrite-quartz body, the diatreme breccia is altered to pyrite-quartz-sericite-pyrite. This body was, in part, replaced by pipelike pyrrhotite bodies zoned outward to carbonate-replacement Zn-Pb ores hearing Fe-rich sphalerite (up to 24 mol % Fes). The second mineralization stage is partly superimposed on the first and consists of zoned east-west-trending Cu-Ag-(Au-Zn-Pb) enargite-pyrite veins hosted in the diatreme breccia in the western part of the deposit and well-zoned Zn-Pb-(Bi-Ag-Cu) carbonate-replacement orebodies; in both cases, sphalerite is Fe poor and the inner parts of the orebodies show typically advanced argillic alteration assemblages, including aluminum phosphate Sulfate (APS) minerals. The zoned enargite-pyrite veins display mineral zoning, from a core of enargite-pyrite +/- alunite with traces of Au, through an intermediate zone of tennantite, chalcopyrite, and Bi minerals to a poorly developed Outer zone hearing sphalerite-galena +/- kaolinite. The carbonate-hosted replacement ores are controlled along N 35 degrees E, N 90 degrees E, N 120 degrees E, and N 170 degrees E faults. They form well-zoned upward-flaring pipelike orebodies with a core of famatinite-pyrite and alunite, an intermediate zone with tetrahedrite-pyrite, chalcopyrite, matildite, cuprobismutite, emplectite, and other Bi minerals accompanied by APS minerals, kaolinite, and dickite, and an outer zone composed of Fe-poor sphalerite (in the range of 0.05-3.5 mol % Fes) and galena. The outermost zone consists of hematite, magnetite, and Fe-Mn-Zn-Ca-Mg carbonates. Most of the second-stage carbonate-replacement orebodies plunge between 25 degrees and 60 degrees to the west, suggesting that the hydrothermal fluids ascended from deeper levels and that no lateral feeding from the veins to the carbonate-replacement orebodies took place. In the Venencocha and Santa Rosa areas, located 2.5 km northwest of the Cerro de Pasco open pit and in the southern part of the deposit, respectively, advanced argillic altered dacitic domes and oxidized veins with advanced argillic alteration halos occur. The latter veins are possibly the oxidized equivalent of the second-stage enargite-pyrite veins located in the western part of the deposit. The alteration assemblage quartz-muscovite-pyrite associated with the pyrite-quartz body suggests that the first stage precipitated at slightly, acidic fin. The sulfide mineral assemblages define an evolutionary path close to the pyrite-pyrrhotite boundary and are characteristic of low-sulfidation states; they suggest that the oxidizing slightly acidic hydrothermal fluid was buffered by phyllite, shale, and carbonate host rock. However, the presence in the pyrite-quartz body of hematite within quartz suggests that, locally, the fluids were less buffered by the host rock. The mineral assemblages of the second mineralization stage are characteristic of high- to intermediate-sulfidation states. High-sulfidation states and oxidizing conditions were achieved and maintained in the cores of the second-stage orebodies, even in those replacing carbonate rocks. The observation that, in places, second-stage mineral assemblages are found in the inner and outer zones is explained in terms of the hydrothermal fluid advancing and waning. Microthermometric data from fluid inclusions in quartz indicate that the different ores of the first mineralization stage formed at similar temperatures and moderate salinities (200 degrees-275 degrees C and 0.2-6.8 wt % NaCl equiv in the pyrite-quartz body; 192 degrees-250 degrees C and 1.1-4.3 wt % NaCl equiv in the pyrrhotite bodies; and 183 degrees-212 degrees C and 3.2-4.0 wt % NaCl equiv in the Zn-Pb ores). These values are similar to those obtained for fluid inclusions in quartz and sphalerite from the second-stage ores (187 degrees-293 degrees C and 0.2-5.2 wt % NaCl equiv in the enargite-pyrite veins: 178 degrees-265 degrees C and 0.2-7.5 wt % NaCl equiv in quartz of carbonate-replacement orebodies; 168 degrees-999 degrees C and 3-11.8 wt % NaCl equiv in sphalerite of carbonate-replacement orebodies; and 245 degrees-261 degrees C and 3.2-7.7 wt % NaCl equiv in quartz from Venencocha). Oxygen and hydrogen isotope compositions oil kaolinite from carbonate-replacement orebodies (delta(18)O = 5.3-11.5%o, delta D = -82 to -114%o) and on alunite from the Venencocha and Santa Rosa areas (delta(18)O = 1.9-6.9%o, delta D = -56 to -73%o). Oxygen isotope compositions of quartz from the first and second stages have 6180 values from 9.1 to 1.7.8 per mil. Calculated fluids in equilibrium with kaolinite have delta(18)O values of 2.0 to 8.2 and delta D values of -69 to -97 per mil; values in equilibrium with alunite are -1.4 to -6.4 and -62 to -79 per mil. Sulfur isotope compositions of sulfides from both stages have a narrow range of delta(34)S values, between -3.7 and +4.2 per mil; values for sulfates from the second stage are between 4.2 and 31.2 per mil. These results define two mixing trends for the ore-forming fluids. The first trend reflects mixing between a moderately saline (similar to 10 wt % NaCl equiv) magmatic end member that had degassed (as indicated by the low delta D values) and meteoric water. The second mixing indicates condensation of magmatic vapor with HCl and SO(2) into meteoric water, which formed alunite. The hydrothermal system at Cerro de Pasco was emplaced at a shallow depth (similar to 500 m) in the epithermal and upper part of a porphyry environment. The similar temperatures and salinities obtained for the first stage and second stages, together with the stable isotope data, indicate that both stages are linked and represent successive stages of epithermal polymetallic mineralization in the upper part of a porphyry system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Trepca Pb-Zn-Ag skarn deposit (29 Mt of ore at 3.45% Pb, 2.30% Zn, and 80 g/t Ag) is located in the Kopaonik block of the western Vardar zone, Kosovo. The mineralization, hosted by recrystallized limestone of Upper Triassic age, was structurally and lithologically controlled. Ore deposition is spatially and temporally related with the postcollisional magmatism of Oligocene age (23-26 Ma). The deposit was formed during two distinct mineralization stages: an early prograde closed-system and a later retrograde open-system stage. The prograde mineralization consisting mainly of pyroxenes (Hd(54-100)Jo(0-45)Di(0-45)) resulted from the interaction of magmatic fluids associated with Oligocene (23-26 Ma) postcollisional magmatism. Whereas there is no direct contact between magmatic rocks and the mineralization, the deposit is classified as a distal Pb-Zn-Ag skarn. Abundant pyroxene reflects low oxygen fugacity (<10(-31) bar) and anhydrous environment. Fluid inclusion data and mineral assemblage limit the prograde stage within a temperature range between 390 degrees and 475 degrees C. Formation pressure is estimated below 900 bars. Isotopic composition of aqueous fluid, inclusions hosted by hedenbergite (delta D = -108 to -130 parts per thousand; delta O-18 = 7.5-8.0 parts per thousand), Mn-enriched mineralogy and high REE content of the host carbonates at the contact with the skarn mineralization suggest that a magmatic fluid was modified during its infiltration through the country rocks. The retrograde mineral assemblage comprises ilvaite, magnetite, arsenopyrite, pyrrhotite, marcasite, pyrite, quartz, and various carbonates. Increases in oxygen and sulfur fugacities, as well as a hydrous character of mineralization, require an open-system model. The opening of the system is related to phreatomagmatic explosion and formation of the breccia. Arsenopyrite geothermometer limits the retrograde stage within the temperature range between 350 degrees and 380 degrees C and sulfur fugacity between 10(-8.8) and 10(-7.2) bars. The principal ore minerals, galena, sphalerite, pyrite, and minor chalcopyrite, were deposited from a moderately saline Ca-Na chloride fluid at around 350 degrees C. According to the isotopic composition of fluid inclusions hosted by sphalerite (delta D = -55 to -74 parts per thousand; delta O-18 = -9.6 to -13.6 parts per thousand), the fluid responsible for ore deposition was dominantly meteoric in origin. The delta S-31 values of the sulfides spanning between -5.5 and +10 parts per thousand point to a magmatic origin of sulfur. Ore deposition appears to have been largely contemporaneous with the retrograde stage of the skarn development. Postore stage accompanied the precipitation of significant amount of carbonates including the travertine deposits at the deposit surface. Mineralogical composition of travertine varies from calcite to siderite and all carbonates contain significant amounts of Mn. Decreased formation temperature and depletion in the REE content point to an influence of pH-neutralized cold ground water and dying magmatic system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid mine drainage (AMD) from the Zn-Pb(-Ag-Bi-Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of similar to 1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO(3), 4330 mg/L Fe and 29,250 mg/L SO(4). Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO(4)). The variations in the H and 0 isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI similar to 0.25) and anglesite (SI similar to 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI similar to 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI similar to -0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (similar to 90 wt.% water) of pH similar to 1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3-7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb approximate to Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu. and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn: all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cleusonite, (Pb,Sr)(U4+,U6+) (Fe2+,Zn)(2) (Ti,Fe2+,Fe3+)(18) (O,OH)(38), is a new member of the crichtonite group. It was found at two occurrences in greenschist facies metamorphosed gneissic series of the Mont Fort and Siviez-Mischabel Nappes in Valais, Switzerland (Cleuson and Bella Tolla summit), and named after the type locality. It occurs as black opaque cm-sized tabular crystals with a bright sub-metallic lustre. The crystals consist of multiple rhombohedra and hexagonal prisms that are generally twinned. Measured density is 4.74(4) g/cm(3) and can be corrected to 4.93(12) g/cm(3) for macroscopic swelling due to radiation damage; the calculated density varies from 5.02(6) (untreated) to 5.27(5) (heat-treated crystals); the difference is related to the cell swelling due to the metamictisation. The empirical formula for cleusonite from Cleuson is (Pb0.89Sr0.12)(Sigma=1.01) (U0.79+4U0.30+6)(Sigma=1.09) (Fe1.91+2Zn0.09)(Sigma=2.00) (Ti11.80Fe3.44+2Fe2.33+3V0.19+5Mn0.08Al0.07)(Sigma=17.90) [O-35.37(OH)(2.63)](Sigma=38). Cations were measured by electron microprobe, the presence of structural (OH) was confirmed by infrared spectroscopy and the U6+/U4+ and Fe2+/Fe3+ ratios were determined by X-ray photoelectron spectroscopy. Cleusonite is partly metamict, and untreated crystals only show three major X-ray diffraction peaks. Because of this radiation-damaged state, the mineral appears optically isotropic and shows a light-grey to white colour in reflected polarized light. Cleusonite is trigonal, space group R $(3) over bar $, and unit-cell parameters are varying from a = 10.576(3), c = 21.325(5) angstrom (untreated crystal) to a = 10.4188(6), c = 20.942(1) angstrom (800 degrees C treatment) and to a = 10.385(2), c = 20.900(7) angstrom (1000 degrees C treatment). The three cells give a common axial ratio 2.01 (1), which is identical to the measured morphological one 2.04(6). ne name cleusonite also applies to the previously described ``uranium-rich senaite'' from Alinci (Macedonia) and the ``plumbodavidite'' from Huanglongpu (China).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the study of the geochemical processes associated with the first successful remediation of a marine shore tailings deposit in a coastal desert environment (Bahia de Ite, in the Atacama Desert of Peru). The remediation approach implemented a wetland on top of the oxidized tailings. The site is characterized by a high hydrauliz gradient produced by agricultural irrigation on upstream gravel terraces that pushed river water (similar to 500 mg/L SO(4)) toward the sea and through the tailings deposit. The geochemical and isotopic (delta(2)H(water) and delta(18)O(water), delta(34)S(sulfate) , delta(18)O(sulfate)) approach applied here revealed that evaporite horizons (anhydrite and halite) in the gravel terraces are the source of increased concentrations of SO(4), Cl, and Na up to similar to 1500 mg/L in the springs at the base of the gravel terraces. Deeper groundwater interacting with underlying marine sequences increased the concentrations of SO(4), Cl, and Na up to 6000 mg/L and increased the alkalinity up to 923 mg/L CaCO(3) eq. in the coastal aquifer. These waters infiltrated into the tailings deposit at the shelf-tailings interface. Nonremediated tailings had a low-pH oxidation zone (pH 1-4) with significant accumulations of efflorescent salts (10-20 cm thick) at the surface because of upward capillary transport of metal cations in the arid climate. Remediated tailings were characterized by neutral pH and reducing conditions (pH similar to 7, Eh similar to 100 mV). As a result, most bivalent metals such as Cu, Zn, and Ni had very low concentrations (around 0.01 mg/L or below detection limit) because of reduction and sorption processes. In contrast, these reducing conditions increased the mobility of iron from two sources in this system: (1) The originally Fe(III)-rich oxidation zone, where Fe(II) was reduced during the remediation process and formed an Fe(II) plume, and (2) reductive dissolution of Fe(III) oxides present in the original shelf lithology formed an Fe-Mn plume at 10-m depth. These two Fe-rich plumes were pushed toward the shoreline where more oxidizing and higher pH conditions triggered the precipitation of Fe(HI)hydroxide coatings on silicates. These coatings acted as a filter for the arsenic, which naturally infiltrated with the river water (similar to 500 mu g/L As natural background) into the tailings deposit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary : Mining activities produce enormous amounts of waste material known as tailings which are composed of fine to medium size particles. These tailings often contain sulfides, which oxidation can lead to acid and metal contamination of water; therefore they need to be remediated. In this work a tailings bioremediation approach was investigated by an interdisciplinary study including geochemistry, mineralogy and microbiology. The aim of the work was to study the effect of the implementation of wetland above oxidizing tailings on the hydrogeology and the biogeochemical element cycles, and to assess the system evolution over time. To reach these goals, biogeochemical processes occurring in a marine shore tailings deposit were investigated. The studied tailings deposit is located at the Bahìa de Ite, Pacific Ocean, southern Peru, where between 1940 and 1996 the tailings were discharged from the two porphyry copper mines Cuajone and Toquepala. After the end of deposition, a remediation approach was initiated in 1997 with a wetland implementation above the oxidizing tailings. Around 90% of the tailings deposits (total 16 km2) were thus remediated, except the central delta area and some areas close to the shoreline. The multi-stable isotope study showed that the tailings were saturated with fresh water in spite of the marine setting, due to the high hydraulic gradient resulting from the wetland implementation. Submarine groundwater discharge (SGD) was the major source of SO4 2-, C1-, Na+, Fe2+, and Mn2+ input into the tailings at the original shelf-seawater interface. The geochemical study (aquatic geochemistry and X-Ray diffraction (XRD) and sequential extractions from the solid fraction) showed that iron and sulfur oxidation were the main processes in the non-remediated tailings, which showed a top a low-pH oxidation zone with strong accumulation of efflorescent salts at the surface due to capillary upward transport of heavy metals (Fe, Cu, Zn, Mn, Cd, Co, and Ni) in the arid climate. The study showed also that the implementation of the wetland resulted in very low concentrations of heavy metals in solution (mainly under the detection limit) due to the near neutral pH and more reducing conditions (100-150 mV). The heavy metals, which were taken from solution, precipitated as hydroxides and sulfides or were bound to organic matter. The bacterial community composition analysis by Terminal Restriction Fragment Length Polymorphism (T-RFLP) and cloning and sequencing of 16S rRNA genes combined with a detailed statistical analysis revealed a high correlation between the bacterial distribution and the geochemical variables. Acidophilic autotrophic oxidizing bacteria were dominating the oxidizing tailings, whereas neutrophilic and heterotrophic reducing bacteria were driving the biogeochemical processes in the remediated tailings below the wetland. At the subsurface of the remediated tailings, an iron cycling was highlighted with oxidation and reduction processes due to micro-aerophilic niches provided by the plant rhizosphere in this overall reducing environment. The in situ bioremediation experiment showed that the main parameter to take into account for the effectiveness was the water table and chemistry which controls the system. The constructed remediation cells were more efficient and rapid in metal removal when saturation conditions were available. This study showed that the bioremediation by wetland implementation could be an effective and rapid treatment for some sulfidic mine tailings deposits. However, the water saturation of the tailings has to be managed on a long-term basis in order to guarantee stability. Résumé : L'activité minière produit d'énormes quantités de déchets géologiques connus sous le nom de « tailings » composées de particules de taille fine à moyenne. Ces déchets contiennent souvent des sulfures dont l'oxydation conduit à la formation d'effluents acides contaminés en métaux, d'où la nécessité d'effectuer une remédiation des sites de stockage concernés. Le but de ce travail est dans un premier temps d'étudier l'effet de la bio-remédiation d'un dépôt de tailings oxydés sur l'hydrogéologie du système et les cycles biogéochimiques des éléments et en second lieu, d'évaluer l'évolution du processus de remédiation dans le temps. Le site étudié dans ce travail est situé dans la Bahía de Ite, au sud du Pérou, au bord de l'Océan Pacifique. Les déchets miniers en question sont déposés dans un environnement marin. De 1940 à 1996, les déchets de deux mines de porphyre cuprifère - Cuajone et Toquepala - ont été acheminés sur le site via la rivière Locumba. En 1997, une première remédiation a été initiée avec la construction d'une zone humide sur les tailings. Depuis, environ 90% de la surface du dépôt (16 km2) a été traité, les parties restantes étant la zone centrale du delta du Locumba et certaines zones proches de la plage. Malgré la proximité de l'océan, les études isotopiques menées dans le cadre de ce travail ont montré que les tailings étaient saturés en eau douce. Cette saturation est due à la pression hydraulique résultant de la mise en place des zones humides. Un écoulement d'eau souterrain sous-marin a été à détecté à l'interface entre les résidus et l'ancien fond marin. En raison de la géologie locale, il constitue une source d'entrée de SO4 2-, Cl-, Na+, FeZ+, et Mn2+ dans le système. L'analyse de la géochimie aquatique, la Diffraction aux Rayons X (XRD) et l'extraction séquentielle ont montré que l'oxydation du fer et .des sulfures est le principal processus se produisant dans les déchets non remédiés. Ceci a entraîné le développement d'une zone d'oxydation à pH bas induisant une forte accumulation des sels efflorescents, conséquence de la migration capillaire des métaux lourds (Fe, Cu, Zn, Mn, Cd, Co et Ni) de la solution vers la surface dans ce climat aride. Cette étude a montré également que la construction de la zone humide a eu comme résultats une précipitation des métaux dans des phases minérales en raison du pH neutre et des conditions réductrices (100-150mV). Les métaux lourds ont précipité sous la forme d'hydroxydes et de sulfures ou sont adsorbés à la matière organique. L'analyse de la composition de la communauté bactérienne à l'aide la technique T-RFLP (Terminal Restriction Fragment Length Polymorphism) et par le clonage/séquençage des gènes de l'ARNr 16S a été combinée à une statistique détaillée. Cette dernière a révélé une forte corrélation entre la distribution de bactéries spécifiques et la géochimie : Les bactéries autotrophes acidophiles dominent dans les déchets oxydés non remédiés, tandis que des bactéries hétérotrophes neutrophiles ont mené les processus microbiens dans les déchets remédiés sous la zone humide. Sous la surface de la zone humide, nos analyses ont également mis en évidence un cycle du fer par des processus d'oxydoréduction rendus possibles par la présence de niches micro-aérées par la rhizosphère dans cet environnement réducteur. L'expérience de bio-remédiation in situ a montré que les paramètres clés qui contrôlent l'efficacité du traitement sont le niveau de la nappe aquifère et la chimie de l'eau. Les cellules de remédiation se sont montrées plus efficaces et plus rapides lorsque le système a pu être saturé en eau. Finalement, cette étude a montré que la bio-remédiation de déchets miniers par la construction de zones humides est un moyen de traitement efficace, rapide et peu coûteux. Cependant, la saturation en eau du système doit être gérée sur le long terme afin de garantir la stabilité de l'ensemble du système.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotopes of carbonates (delta(13)C(carb), delta(18)O(carb)), organic matter (delta(13)C(org), delta(15)N(org)) and major, trace and rare earth element (REE) compositions of marine carbonate rocks of Late Permian to Early Triassic age were used to establish the position of the Permian-Triassic boundary (PTB) at two continuous sections in the Velebit Mountain, Croatia. The chosen sections - Rizvanusa and Brezimenjaca - are composed of two lithostratigraphic units, the Upper Permian Transitional Dolomite and the overlying Sandy Dolomite. The contact between these units, characterized by the erosional features and sudden occurrence of ooids and siliciclastic grains, was previously considered as the chronostratigraphic PTB. The Sandy Dolomite is characterized by high content of non-carbonate material (up to similar to 30 wt.% insoluble residue), originated from erosion of the uplifted hinterland. A relatively rich assemblage of Permian fossils (including Geinitzina, Globivalvulina, Hemigordius, bioclasts of gastropods, ostracods and brachiopods) was found for the first time in Sandy Dolomite, 5 m above the lithologic boundary in the Rizvanusa section. A rather abrupt negative delta(13)C(carb) excursion in both sections appears in rocks showing no recognizable facies change within the Sandy Dolomite, -2 parts per thousand at Rizvanusa and -1.2 parts per thousand at Brezimenjaca, 11 m and 0.2 m above the lithologic contact, respectively. This level within the lower part of the Sandy Dolomite is proposed as the chemostratigraphic PTB. In the Rizvanusa section, the delta(13)C(org) values decline gradually from similar to-25 parts per thousand in the Upper Permian to similar to-29 parts per thousand in the Lower Triassic. The first negative delta(13)C(org) excursion occurs above the lithologic contact, within the uppermost Permian deposits, and appears to be related to the input of terrigenous material. The release of isotopically light microbial soil-biomass into the shallow-marine water may explain this sudden decrease of delta(13)C(org) values below the PTB. This would support the hypothesis that in the western Tethyan realm the land extinction, triggering a sudden drop of woody vegetation and related land erosion, preceded the marine extinction. The relatively low delta(15)N(org) values at the Permian-Triassic (P-Tr) transition level, close to approximate to 0 parts per thousand, and a secondary negative delta(13)C(org) excursion of -0.5 parts per thousand point to significant terrestrial input and primary contribution of cyanobacteria. The profiles of the concentrations of redox-sensitive elements (Ce, Mn, Fe, V), biogenic or biogenic-scavenged elements (P, Ba, Zn, V), Ce/Ce* values, and normalized trace elements, including Ba/Al, Ba/Fe, Ti/Al, Al/(Al + Fe + Mn) and Mn/Ti show clear excursions at the Transitional Dolomite-Sandy Dolomite lithologic boundary and the chemostratigraphic P-Tr boundary. The stratigraphic variations indicate a major regression phase marking the lithologic boundary, transgressive phases in the latest Permian and a gradual change into shallow/stagnant anoxic marine environment towards the P-Tr boundary level and during the earliest Triassic. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The breccia-hosted epithermal Au-Ag deposit of Rosia Montana is located 7 kin northeast of Abrud, in the northern part of the South Apuseni Mountains, Romania. Estimated total reserves of 214.91 million metric toils (Mt) of ore at 1.46 g/t An and 6.9 g/t Ag (10.1 Moz of An and 47.6 Moz of Ag) make Rosia Montana one of the largest gold deposits in Europe. At this location, Miocene calc-alkaline magmatic and hydrothermal activity was associated with local extensional tectonics within a strike-slip regime related to the indentation of the Adriatic microplate into the European plate during the Carpathian orogenesis. The host rocks of the magmatic complex consist of pre-Mesozoic metamorphosed continental crust covered by Cretaceous turbiditic sediment (flysch). Magmatic activity at Rosia Montana and its surroundings occurred in several pulses and lasted about 7 m.y, Rosia Montana is a breccia-hosted epithermal system related to strong phreatomagmatic activity due to the shallow emplacement of the Montana dacite. The Montana dacite intruded Miocene volcaniclastic material (volcaniclastic breccias) and crops out at Cetate and Carnic Hills. Current mining is focused primarily on the Cetate open pit, which was mapped in detail, leading to the recognition of three distinct breccia bodies: the dacite breccia with a dominantly hydrothermal matrix, the gray polymict breccia with a greater proportion of sand-sized matrix support, and the black polymict breccia, which reached to the surface, contains carbonized tree trunks and has a dominantly barren elastic matrix. The hydrothermal alteration is pervasive. Adularia alteration with a phyllic overprint is ubiquitous; silicification and argillic alteration occur locally. Mineralization consists of quartz, adularia, carbonates (commonly Mn-rich), pyrite, Fe-poor sphalerite, galena, chalcopyrite, tetrahedrite, and native gold and occurs as disseminations, as well as in veins and filling vugs within the Montana dacite and the different breccias. The age of mineralization (12.85 +/- 0.07 Ma) was determined by Ar-40- Ar-39 dating on hydrothermal adularia crystals from vugs in the dacite breccia in the Cetate open pit. Microthermometric measurements of fluid inclusions in quartz phenocrysts from the Montana dacite revealed two fluid types that are absent from the hydrothermal breccia and must have been trapped at depth prior to dacite dome emplacement: brine inclusions (32-55 -wt % NaCl equiv, homogenizing at T-h > 460 degrees C) and intermediate density fluids (4.9-15.6 wt % NaCl equiv, T, between 345 degrees-430 degrees C). Secondary aqueous fluid inclusion assemblages in the phenocrysts have salinities of 0.2 to 2.2 wt percent NaCl equiv and T-h of 200 degrees to 280 degrees C. Fluid inclusion assemblages in hydrothermal quartz from breccias and veins have salinities of 0.2 to 3.4 wt percent NaCl equiv and T-h, from 200 degrees to 270 degrees C. The oxygen isotope composition of several zones of an ore-related epithermal quartz crystal indicate a very constant delta O-18 of 4.5 to 5.0 per mil for the mineralizing fluid, despite significant salinity and temperature variation over time. Following microthermometry, selected fluid inclusion assemblages were analyzed by laser ablation-inductively coupled-plasma mass spectrometry (LA-ICMS). Despite systematic differences in salinity between phenocryst-hosted fluids trapped at depth and fluids from quartz in the epithermal breccias, all fluids have overlapping major and trace cation ratios, including identical Na/K/Rb/Sr/Cs/Ba. Consistent with the constant near-magmatic oxygen isotope composition of the hydrothermal fluids, these data strongly indicate a common magmatic component of these chemically conservative solutes in all fluids. Cu, Pb, Zn, and Mn show variations in concentration relative to the relatively non-reactive alkalis, reflecting the precipitation of sulfide minerals together with An in the epithermal breccia, and possibly of Cu in an inferred subjacent porphyry environment. The magmatic-hydrothermal processes responsible for epithermal Au-Ag mineralization at Rosia Montana are, however, not directly related to the formation of the spatially associated porphyry Cu-Au deposit of Rosia Poieni, which occurred lout 3 m.y. later.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Jebel Ressas Pb-Zn deposits in North-Eastern Tunisia occur mainly as open-space fillings (lodes, tectonic breccia cements) in bioclastic limestones of the Upper Jurassic Ressas Formation and along the contact of this formation with Triassic rocks. The galena-sphalerite association and their alteration products (cerussite, hemimorphite, hydrozincite) are set within a calcite gangue. The Triassic rocks exhibit enrichments in trace metals, namely Pb, Co and Cd enrichment in clays and Pb, Zn, Cd, Co and Cr enrichment in carbonates, suggesting that the Triassic rocks have interacted with the ore-bearing fluids associated with the Jebel Ressas Pb-Zn deposits. The delta(18)O content of calcite associated with the Pb-Zn mineralization suggests that it is likely to have precipitated from a fluid that was in equilibrium with the Triassic dolostones. The delta(34)S values in galenas from the Pb-Zn deposits range from -1.5 to +11.4%, with an average of 5.9% and standard deviation of 3.9%. These data imply mixing of thermochemically-reduced heavy sulfur carried in geothermal- and fault-stress-driven deep-seated source fluid with bacterially-reduced light sulfur carried in topography-driven meteoric fluid. Lead isotope ratios in galenas from the Pb-Zn deposits are homogenous and indicate a single upper crustal source of base-metals for these deposits. Synthesis of the geochemical data with geological data suggests that the base-metal mineralization at Jebel Ressas was formed during the Serravallian-Tortonian (or Middle-Late Miocene) Alpine compressional tectonics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present communication is to emphasize that some variations of the measured delta(13)C and delta(18)O values are apparent, and due to analytical interferences caused by the presence of sulfur and organosulfur compounds in the analyzed carbonates. This is particularly relevant for isotopic studies on carbonate-hosted mineral deposits, where the nearly ubiquitous association of the host carbonates with organic matter and sulfides can certainly affect the metallogenetic interpretations. In this work two methods were used to overcome the disturbing effects of sulfides and organic matter: (1) sample pretreatment following the method proposed by Charef and Sheppard (1984), combining the oxidation of organic matter with sodium hypochlorite and trapping of the sulfur species with silver phosphate; and (2) laser-based microprobe extraction. Apparent isotopic variations in sparry dolomite from a single hand sample of zebra ore from the MVT Zn-Pb deposit, San Vicente, central Peru, are as large as 6 parts per thousand delta(13)C and 4 parts per thousand delta(18)O. These variations are reduced to several tenths of a per mil when the samples are pretreated. A careful examination of the effects of treatment with NaOCl and/or Ag3PO4 in relation to the concentration of sulfide inclusions indicates that the main disturbing effects for delta(13)C values are the presence of sulfur species and organic matter, whereas the delta(18)O values are mainly affected by the presence of sulfides. Fine- and medium-grained replacement carbonates from MVT and other sediment-hosted base metal deposits are potentially the most affected during isotope analysis, due to the common presence of organic matter and sulfides. Using in situ laser microprobe techniques, it is possible to determine isotopic variations at a sub-millimeter scale. Our results show that laser extraction analysis allows a more precise sampling of the carbonate minerals, and minimizes contamination of the sample with sulfides and to some extent with intergrown organic matter. However, there is an isotopic shift associated with the laser extraction technique, of the order of 0.5-1 parts per thousand for delta(13)C and delta(18)O values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACTThe pollution of air, soil and water by heavy metals through anthropogenic activities is an object of numerous environmental studies since long times. A number of natural processes, such as volcanic activity, hydrothermal fluid circulation and weathering of metal-rich deposits may lead to an additional and potentially important input and accumulation of heavy metals in the environment. In the Swiss and French Jura Mountains, anomalous high cadmium (Cd) concentrations (up to 16 ppm) in certain soils are related to the presence of underlying Cd-enriched (up to 21 ppm) carbonate rocks of Middle to Late Jurassic age. The aim of this study is to understand the processes controlling Cd incorporation into carbonate rocks of Middle and Late Jurassic age and to reconstruct the sedimentary and environmental conditions, which have led to Cd enrichments in these sedimentary rocks.Cd concentrations in studied hemipelagic sections in France vary between 0.1 and 0.5 ppm (mean 0.15 ppm). Trace-element behavior and high Mn concentrations suggest that sediment accumulation occurred in a well-oxygenated environment. Increases in Cd contents in the bulk-rock carbonate sediments may be related to increases in surface-water productivity under oxic conditions and important remineralization of organic matter within the water column. In platform settings preserved in the Swiss Jura Mountains, no correlation is observed between Cd contents and evolution of environmental conditions. Cd concentrations in these platform sections are often below the detection limit, with isolated peaks of up to 21 ppm. These important Cd enrichments are associated with peaks in Zn concentrations and are present in carbonate rocks independently of facies and age. The high Cd contents in these shallow-water carbonate rocks are partly related to the presence of disseminated, Cd-rich (up to 1.8%), sphalerite (ZnS) mineralization. The basement rocks are considered to be the source of metals for sulfide mineralization in the overlying Jurassic strata, as the sphalerite Pb isotope pattern is comparable to that of granite rocks from the nearby southern Black Forest crystalline massif. The Rb-Sr ages of sphalerite samples indicate that a main phase of sphalerite formation occurred near the boundary between the late Middle and early Late Jurassic, at around 162 Ma, as a result of enhanced tectonic and hydrothermal activity in Europe, related to the opening of the Central Atlantic and to the tectonic/thermal subsidence during spreading of the Alpine Tethys. I therefore propose to use unusually high Cd concentrations in carbonates as a tracer of tectonic activity in the Jura Mountains area, especially in the case when important enrichments in Zn co-occur. Paleoproductivity reconstructions based on records of authigenic Cd may be compromised not only by post-depositional redistribution, but also by incorporation of additional Cd from hydrothermal solutions circulating in the rock.The circulation of metal-rich hydrothermal fluids through the sediment sequence, in addition to specific environmental conditions during sedimentation, contributes to the incorporation of Cd into the carbonate rocks. However, only hydrothermal activity has led to the unusually high concentrations of Cd in carbonate rocks of Bajocian-Oxfordian age, through the formation of sphalerite mineralization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Jalta and Jebel Ghozlane ore deposits are located in the extreme North of Tunisia, within the Nappe zone. The mineralization of Jalta, hosted in Triassic dolostones and the overlying Mio-Pliocene conglomerates, consists of abundant galena, barite, and cerussite with accessory sphalerite, pyrite, and jordanite. At Jebel Ghozlane, large Pb-Zn concentrations occur in the Triassic dolostones and Eocene limestones. The mineral association consists of galena, sphalerite, barite, and celestite and their oxidation products (cerussite, smithsonite, and anglesite). Lead isotope ratios in galena from both districts are relatively homogeneous ((206)Pb/(204)Pb = 18.702-18.823, (207)Pb/(204)Pb = 15.665-15.677, (208)Pb/(204)Pb = 38.725-38.875). The delta(34)S values for sulfates from both areas (+12.2 to +16.2 parts per thousand at Jalta and + 14.3 to + 19.4 parts per thousand at Jebel Ghozlane) are compatible with a derivation of sulfur from marine sulfates, possibly sourced from the Triassic evaporites. The delta(34)S values of the sulfides have a range between -10 and +12.5 parts per thousand at Jalta, and between -9.1 and +22.1 parts per thousand at Jebel Ghozlane. The large range of values suggests reduction of the sulfate by bacterial and/or thermochemical reduction of sulfate to sulfur. The high delta(34)S values of sulfides require closed-system reduction processes. The isotopically light carbon in late calcites (-6.3 to -2.5 parts per thousand) and authigenic dolomite (-17.6 parts per thousand) suggests an organic source of at least some of the carbon in these samples, whereas the similarity of the delta(18)O values between calcite (+24.8 parts per thousand) and the authigenic dolomite (+24.7 parts per thousand) of Jalta and their respective host rocks reflects oxygen isotope buffering of the mineralizing fluids by the host rock carbonates. The secondary calcite isotope compositions of Jalta are compatible with a hydrothermal fluid circulation at approximately 100 to 200 degrees C, but temperatures as low as 50 degrees C may be indicated by the late calcite of Jebel Ghozlane (delta(18)O of +35.9 parts per thousand). Given the geological events related to the Alpine orogeny in the Nappe zone (nappe emplacement, bimodal volcanism, and reactivation of major faults, such as Ghardimaou-Cap Serrat) and the Neogene age of the host rocks in several localities, a Late-Miocene age is proposed for the Pb-Zn ore deposits considered in this study. Remobilization of deep-seated primary deposits in the Paleozoic sequence is the most probable source for metals in both localities considered in this study and probably in the Nappe zone as a whole. (C) 2011 Elsevier B.V. All rights reserved.