4 resultados para Mirna
em Université de Lausanne, Switzerland
Resumo:
MicroRNAs (miRNAs) have been shown to play important roles in both brain development and the regulation of adult neural cell functions. However, a systematic analysis of brain miRNA functions has been hindered by a lack of comprehensive information regarding the distribution of miRNAs in neuronal versus glial cells. To address this issue, we performed microarray analyses of miRNA expression in the four principal cell types of the CNS (neurons, astrocytes, oligodendrocytes, and microglia) using primary cultures from postnatal d 1 rat cortex. These analyses revealed that neural miRNA expression is highly cell-type specific, with 116 of the 351 miRNAs examined being differentially expressed fivefold or more across the four cell types. We also demonstrate that individual neuron-enriched or neuron-diminished RNAs had a significant impact on the specification of neuronal phenotype: overexpression of the neuron-enriched miRNAs miR-376a and miR-434 increased the differentiation of neural stem cells into neurons, whereas the opposite effect was observed for the glia-enriched miRNAs miR-223, miR-146a, miR-19, and miR-32. In addition, glia-enriched miRNAs were shown to inhibit aberrant glial expression of neuronal proteins and phenotypes, as exemplified by miR-146a, which inhibited neuroligin 1-dependent synaptogenesis. This study identifies new nervous system functions of specific miRNAs, reveals the global extent to which the brain may use differential miRNA expression to regulate neural cell-type-specific phenotypes, and provides an important data resource that defines the compartmentalization of brain miRNAs across different cell types.
Resumo:
BACKGROUND: Dilated cardiomyopathy (DCM) is a leading cause of chronic morbidity and mortality in muscular dystrophy (MD) patients. Current pharmacological treatments are not yet able to counteract chronic myocardial wastage, thus novel therapies are being intensely explored. MicroRNAs have been implicated as fine regulators of cardiomyopathic progression. Previously, miR-669a downregulation has been linked to the severe DCM progression displayed by Sgcb-null dystrophic mice. However, the impact of long-term overexpression of miR-669a on muscle structure and functionality of the dystrophic heart is yet unknown. METHODS AND RESULTS: Here, we demonstrate that intraventricular delivery of adeno-associated viral (AAV) vectors induces long-term (18 months) miR-669a overexpression and improves survival of Sgcb-null mice. Treated hearts display significant decrease in hypertrophic remodeling, fibrosis, and cardiomyocyte apoptosis. Moreover, miR-669a treatment increases sarcomere organization, reduces ventricular atrial natriuretic peptide (ANP) levels, and ameliorates gene/miRNA profile of DCM markers. Furthermore, long-term miR-669a overexpression significantly reduces adverse remodeling and enhances systolic fractional shortening of the left ventricle in treated dystrophic mice, without significant detrimental consequences on skeletal muscle wastage. CONCLUSIONS: Our findings provide the first evidence of long-term beneficial impact of AAV-mediated miRNA therapy in a transgenic model of severe, chronic MD-associated DCM.
Resumo:
Splenic marginal zone lymphoma (SMZL) is a low grade B-cell non-Hodgkin's lymphoma. The molecular pathology of this entity remains poorly understood. To characterise this lymphoma at the molecular level, we performed an integrated analysis of 1) genome wide genetic copy number alterations 2) gene expression profiles and 3) epigenetic DNA methylation profiles.We have previously shown that SMZL is characterised by recurrent alterations of chromosomes 7q, 6q, 3q, 9q and 18; however, gene resolution oligonucleotide array comparative genomic hybridisation did not reveal evidence of cryptic amplification or deletion in these regions. The most frequently lost 7q32 region contains a cluster of miRNAs. qRT-PCR revealed that three of these (miR-182/96/183) show underexpression in SMZL, and miR-182 is somatically mutated in >20% of cases of SMZL, as well as in >20% of cases of follicular lymphoma, and between 5-15% of cases of chronic lymphocytic leukaemia, MALT-lymphoma and hairy cell leukaemia. We conclude that miR-182 is a strong candidate novel tumour suppressor miRNA in lymphoma.The overall gene expression signature of SMZL was found to be strongly distinct fromthose of other lymphomas. Functional analysis of gene expression data revealed SMZL to be characterised by abnormalities in B-cell receptor signalling (especially through the CD19/21-PI3K/AKT pathway) and apoptotic pathways. In addition, genes involved in the response to viral infection appeared upregulated. SMZL shows a unique epigenetic profile, but analysis of differentially methylated genes showed few with methylation related transcriptional deregulation, suggesting that DNA methylation abnormalities are not a critical component of the SMZL malignant phenotype.
Resumo:
SummaryEwing's sarcoma family tumors (ESFT) are the second most frequent cancer of bone in adolescents and young adults. ESFT are characterized by a chromosomal translocation that involves the 5' segment of the EWSR1 gene and the 3' segment of an ets transcription factor family member gene. In 85% of cases the chromosomal translocation generates the fusion protein EWSR1-FLI-1. Recent work from our laboratory identified mesenchymal stem cells (MSC) as the putative cell of origin of ESFT and characterized a CD133+ subpopulation of ESFT cells with tumor initating and self-renewal capacity, known as cancer stem cells (CSC). MicroRNAs (miRNAs) are small non-coding RNA that regulate protein expression at the post-transcriptional level by either repressing translation or destabilizing mRNA. MiRNAs participate in several biological processes including cell proliferation and differentiation. We used miRNA expression profile comparison between MSC and ESFT cell lines and CD133+ ESFT cells and CD133" ESFT cells to investigate the role of miRNAs in ESFT pathogenesis. MiRNA expression profile comparison of MSC and ESFT cell lines identified 35 differentially expressed miRNAs. Among these was down-regulation of let-7a which results, in part, by the direct repression of let-7a-l promoter by EWSR1-FLI-1. Overexpression of let-7a in ESFT cells blocked ESFT tumorigenesis through an High-motility group AT-hook2 (HMGA2)-mediated mechanism.MiRNA profiling of CD133+ ESFT and CD 133" ESFT cells revealed a broad repression of miRNAs in CD133+ ESFT mediated by down-regulation of TARBP2, a central regulator of the miRNA maturation pathway. Down-regulation of TARBP2 in ESFT cell lines results in a miRNA expression profile reminescent of that observed in CD133+ ESFT and associated with increased tumorigenicity. Enhancement of TARBP2 activity using the antibiotic enoxacin or overexpression of miRNA-143 or miRNA-145, two targets of TARBP2, impaired ESFT CSC self-renewal and block ESFT tumorigenicity. Moreover in vivo administration of synthetic let- 7a, miRNA-143 or miRNA-145 blocks ESFT tumor growth.Thus, dysregulation of miRNA expression is a key feature in ESFT pathogenesis and restoration of their expressions might be used as a new therapeutic tool.RésuméLe sarcome d'Ewing est la deuxième tumeur osseuse la plus fréquente chez l'enfant et le jeune adolescent. Le sarcome d'Ewing est caractérisé par une translocation chromosomique qui produit une protéine de fusion EWSR1-FLI-1. Des récents travaux ont identifié les cellules mésenchymateuses souches (MSC) comme étant les cellules à l'origine du sarcome d'Ewing ainsi qu'une sous-population de cellules exprimant le marqueur CD 133, dans le sarcome d'Ewing connu comme les cellules cancéreuses souches (CSC). Ces cellules ont la capacité d'initier la croissance tumorale et possèdent des propriétés d'auto-renouvellement. Les microRNAs (miRNAs) sont de petits ARN qui ne codent pas pour des protéines et qui contrôlent l'expression des protéines en bloquant la traduction ou en dégradant l'ARNm. Les miRNAs participent à différents processus biologiques comme la prolifération et la différenciation cellulaires.Le but de ce travail est d'étudier le rôle des miRNAs dans le sarcome d'Ewing. Un profil d'expression de miRNAs entre les MSC et des lignées cellulaires de sarcome d'Ewing a mis en évidence 35 miRNAs différemment exprimés. Parmi ceux-ci, la répression de let-7a est liée à la répression directe du promoteur de let-7a-l par EWSR-FLI-1. La sur-expression de let-7a dans des lignées cellulaires de sarcome d'Ewing inhibe leur croissance tumorale. Cette inhibition de croissance tumorale est régulée par la protéine high-motility group AT-hook2 (HMGA2).Un profil d'expression de miRNAs entre les cellules du sarcome d'Ewing CD133+ et CD133" montre une sous-expression d'un grand nombre de miRNAs dans les cellules CD133+ par rapport aux cellules CD133". Cette différence d'expression de miRNAs est due à la répression du gène TARBP2 qui participe à la maturation des miRNAs. La suppression de TARBP2 dans des cellules d'Ewing induit un profil d'expression de miRNAs similaire aux cellules CD133+ du sarcome d'Ewing et augmente la tumorigenèse des lignées cellulaires. De plus l'utilisation d'enoxacin, une molécule qui augmente l'activité de TARBP2 ou la sur- expression des miRNA143 ou miRNA-145 dans les CSC du sarcome d'Ewing bloque l'auto- renouvellement des cellules et la croissance tumorale. Finalement, l'administration de let-7a, miRNA-143 ou miRNA-145, dans des souris bloque la croissance du sarcome d'Ewing. Ces résultats indiquent que la dysrégulation des miRNAs participe à la pathogenèse du sarcome d'Ewing et que les miRNAs peuvent être utilisés comme des agents thérapeutiques.