3 resultados para Minimum inhibitory concentration

em Université de Lausanne, Switzerland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The widespread incidence of enterococci resistant to ampicillin, vancomycin and aminoglycosides, the first-line anti-enterococcal antibiotics, has made the treatment of severe enterococcal infections difficult and alternatives should be explored. We investigated the activity of daptomycin combined with linezolid against three Enterococcus faecalis and four Enterococcus faecium strains resistant to standard drugs used for therapy. Minimum inhibitory concentrations (MICs) were determined by the broth dilution method. Drug interactions were assessed by the checkerboard and time-kill methods. Synergy was defined by a fractional inhibitory concentration index (FICI) of ≤0.5 or a ≥2 log10 CFU/mL killing at 24 h with the combination in comparison with killing by the most active single agent. Indifference was defined by a FICI > 0.5-4.0 or a 1-2 log10 CFU/mL killing compared with the most active single agent. MICs of daptomycin were 2-4 μg/mL for E. faecalis and 2-8 μg/mL for E. faecium. MICs of linezolid were 1-2 μg/mL for all bacteria. In the checkerboard assay, five isolates showed synergism (FICI < 0.5) and two showed indifference (FICIs of 0.53 and 2). Killing studies revealed synergy of daptomycin plus linezolid against four isolates (2.2-3.7 log10 CFU/mL kill) and indifference (1.1-1.6 log10 CFU/mL kill) for the other three strains. Antagonism was not observed. In conclusion, the combination of daptomycin and linezolid had a synergistic or indifferent effect against multidrug-resistant enterococci. Additional studies are needed to explore the potential of this combination for severe enterococcal infections when first-line antibiotic combinations cannot be used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: Imipenem is a broad spectrum antibiotic used to treat severe infections in critically ill patients. Imipenem pharmacokinetics (PK) was evaluated in a cohort of neonates treated in the Neonatal Intensive Care Unit of the Lausanne University Hospital. The objective of our study was to identify key demographic and clinical factors influencing imipenem exposure in this population. Method: PK data from neonates and infants with at least one imipenem concentration measured between 2002 and 2013 were analyzed applying population PK modeling methods. Measurement of plasma concentrations were performed upon the decision of the physician within the frame of a therapeutic drug monitoring (TDM) programme. Effects of demographic (sex, body weight, gestational age, postnatal age) and clinical factors (serum creatinine as a measure of kidney function; co-administration of furosemide, spironolactone, hydrochlorothiazide, vancomycin, metronidazole and erythromycin) on imipenem PK were explored. Model-based simulations were performed (with a median creatinine value of 46 μmol/l) to compare various dosing regimens with respect to their ability to maintain drug levels above predefined minimum inhibitory concentrations (MIC) for at least 40 % of the dosing interval. Results: A total of 144 plasma samples was collected in 68 neonates and infants, predominantly preterm newborns, with median gestational age of 27 weeks (24 - 41 weeks) and postnatal age of 21 days (2 - 153 days). A two-compartment model best characterized imipenem disposition. Actual body weight exhibited the greatest impact on PK parameters, followed by age (gestational age and postnatal age) and serum creatinine on clearance. They explain 19%, 9%, 14% and 9% of the interindividual variability in clearance respectively. Model-based simulations suggested that 15 mg/kg every 12 hours maintain drug concentrations over a MIC of 2 mg/l for at least 40% of the dosing interval during the first days of life, whereas neonates older than 14 days of life required a dose of 20 mg/kg every 12 hours. Conclusion: Dosing strategies based on body weight and post-natal age are recommended for imipenem in all critically ill neonates and infants. Most current guidelines seem adequate for newborns and TDM should be restricted to some particular clinical situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF), originally identified as a cytokine secreted by T lymphocytes, was found recently to be both a pituitary hormone and a mediator released by immune cells in response to glucocorticoid stimulation. We report here that the insulin-secreting beta cell of the islets of Langerhans expresses MIF and that its production is regulated by glucose in a time- and concentration-dependent manner. MIF and insulin colocalize by immunocytochemistry within the secretory granules of the pancreatic islet beta cells, and once released, MIF appears to regulate insulin release in an autocrine fashion. In perifusion studies performed with isolated rat islets, immunoneutralization of MIF reduced the first and second phase of the glucose-induced insulin secretion response by 39% and 31%, respectively. Conversely, exogenously added recombinant MIF was found to potentiate insulin release. Constitutive expression of MIF antisense RNA in the insulin-secreting INS-1 cell line inhibited MIF protein synthesis and decreased significantly glucose-induced insulin release. MIF is therefore a glucose-dependent, islet cell product that regulates insulin secretion in a positive manner and may play an important role in carbohydrate metabolism.