21 resultados para Mercury emissions

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: In Burkina Faso, gold ore is one of the main sources of income for an important part of the active population. Artisan gold miners use mercury in the extraction, a toxic metal whose human health risks are well known. The aim of the present study was to assess mercury exposure as well as to understand the exposure determinants of gold miners in Burkinabe small-scale mines.METHODS: The examined gold miners' population on the different selected gold mining sites was composed by persons who were directly and indirectly related to gold mining activities. But measurement of urinary mercury was performed on workers most susceptible to be exposed to mercury. Thus, occupational exposure to mercury was evaluated among ninety-three workers belonging to eight different gold mining sites spread in six regions of Burkina Faso. Among others, work-related exposure determinants were taken into account for each person during urine sampling as for example amalgamating or heating mercury. All participants were medically examined by a local medical team in order to identify possible symptoms related to the toxic effect of mercury.RESULTS: Mercury levels were high, showing that 69% of the measurements exceeded the ACGIH (American Conference of Industrial Hygienists) biological exposure indice (BEI) of 35 µg per g of creatinine (µg/g-Cr) (prior to shift) while 16% even exceeded 350 µg/g-Cr. Basically, unspecific but also specific symptoms related to mercury toxicity could be underlined among the persons who were directly related to gold mining activities. Only one-third among the studied subpopulation reported about less than three symptoms possibly associated to mercury exposure and nearly half of them suffered from at least five of these symptoms. Ore washers were more involved in the direct handling of mercury while gold dealers in the final gold recovery activities. These differences may explain the overexposure observed in gold dealers and indicate that the refining process is the major source of exposure.CONCLUSIONS: This study attests that mercury exposure still is an issue of concern. North-South collaborations should encourage knowledge exchange between developing and developed countries, for a cleaner artisanal gold mining process and thus for reducing human health and environmental hazards due to mercury use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incidence of neurodegenerative disease like Parkinson's disease and Alzheimer's disease (AD) increases dramatically with age; only a small percentage is directly related to familial forms. The etiology of the most abundant, sporadic forms is complex and multifactorial, involving both genetic and environmental factors. Several environmental pollutants have been associated with neurodegenerative disorders. The present article focuses on results obtained in experimental neurotoxicology studies that indicate a potential pathogenic role of lead and mercury in the development of neurodegenerative diseases. Both heavy metals have been shown to interfere with a multitude of intracellular targets, thereby contributing to several pathogenic processes typical of neurodegenerative disorders, including mitochondrial dysfunction, oxidative stress, deregulation of protein turnover, and brain inflammation. Exposure to heavy metals early in development can precondition the brain for developing a neurodegenerative disease later in life. Alternatively, heavy metals can exert their adverse effects through acute neurotoxicity or through slow accumulation during prolonged periods of life. The pro-oxidant effects of heavy metals can exacerbate the age-related increase in oxidative stress that is related to the decline of the antioxidant defense systems. Brain inflammatory reactions also generate oxidative stress. Chronic inflammation can contribute to the formation of the senile plaques that are typical for AD. In accord with this view, nonsteroidal anti-inflammatory drugs and antioxidants suppress early pathogenic processes leading to Alzheimer's disease, thus decreasing the risk of developing the disease. The effects of lead and mercury were also tested in aggregating brain-cell cultures of fetal rat telencephalon, a three-dimensional brain-cell culture system. The continuous application for 10 to 50 days of non-cytotoxic concentrations of heavy metals resulted in their accumulation in brain cells and the occurrence of delayed toxic effects. When applied at non-toxic concentrations, methylmercury, the most common environmental form of mercury, becomes neurotoxic under pro-oxidant conditions. Furthermore, lead and mercury induce glial cell reactivity, a hallmark of brain inflammation. Both mercury and lead increase the expression of the amyloid precursor protein; mercury also stimulates the formation of insoluble beta-amyloid, which plays a crucial role in the pathogenesis of AD and causes oxidative stress and neurotoxicity in vitro. Taken together, a considerable body of evidence suggests that the heavy metals lead and mercury contribute to the etiology of neurodegenerative diseases and emphasizes the importance of taking preventive measures in this regard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most available studies on lead smelter emissions deal with the environmental impact of outdoor particles, but only a few focus on air quality at workplaces. The objective of this study is to physically and chemically characterize the Pb-rich particles emitted at different workplaces in a lead recycling plant. A multi-scale characterization was conducted from bulk analysis to the level of individual particles, to assess the particles properties in relation with Pb speciation and availability. Process PM from various origins were sampled and then compared; namely Furnace and Refining PM respectively present in the smelter and at refinery workplaces, Emissions PM present in channeled emissions.These particles first differed by their morphology and size distribution, with finer particles found in emissions. Differences observed in chemical composition could be explained by the industrial processes. All PM contained the same major phases (Pb, PbS, PbO, PbSO4 and PbO·PbSO4) but differed on the nature and amount of minor phases. Due to high content in PM, Pb concentrations in the CaCl2 extractant reached relatively high values (40 mg.L-1). However, the ratios (soluble/total) of CaCl2 exchangeable Pb were relatively low (< 0.02%) in comparison with Cd (up to 18%). These results highlight the interest to assess the soluble fractions of all metals (minor and major) and discuss both total metal concentrations and ratios for risk evaluations. In most cases metal extractability increased with decreasing size of particles, in particular, lead exchangeability was highest for channeled emissions. Such type of study could help in the choice of targeted sanitary protection procedures and for further toxicological investigations. In the present context, particular attention is given to Emissions and Furnace PM. Moreover, exposure to other metals than Pb should be considered. [Authors]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined Hg biogeochemistry in Baihua Reservoir, a system affected by industrial wastewater containing mercury (Hg). As expected, we found high levels of total Hg (THg, 664-7421 ng g(-1)) and monomethylmercury (MMHg, 3-21 ng g(-1)) in the surface sediments (0-10 cm). In the water column, both THg and MMHg showed strong vertical variations with higher concentrations in the anoxic layer (>4m) than in the oxic layer (0-4 m), which was most pronounced for the dissolved MMHg (p < 0.001). However, mercury levels in biota samples (mostly cyprinid fish) were one order of magnitude lower than common regulatory values (i.e. 0.3-0.5 mg kg(-1)) for human consumption. We identified three main reasons to explain the low fish Hg bioaccumulation: disconnection of the aquatic food web from the high MMHg zone, simple food web structures, and biodilution effect at the base of the food chain in this eutrophic reservoir.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road transport emissions are a major contributor to ambient particulate matter concentrations and have been associated with adverse health effects. Therefore, these emissions are targeted through increasingly stringent European emission standards. These policies succeed in reducing exhaust emissions, but do not address "nonexhaust" emissions from brake wear, tire wear, road wear, and suspension in air of road dust. Is this a problem? To what extent do nonexhaust emissions contribute to ambient concentrations of PM10 or PM2.5? In the near future, wear emissions may dominate the remaining traffic-related PM10 emissions in Europe, mostly due to the steep decrease in PM exhaust emissions. This underlines the need to determine the relevance of the wear emissions as a contribution to the existing ambient PM concentrations, and the need to assess the health risks related to wear particles, which has not yet received much attention. During a workshop in 2011, available knowledge was reported and evaluated so as to draw conclusions on the relevance of traffic-related wear emissions for air quality policy development. On the basis of available evidence, which is briefly presented in this paper, it was concluded that nonexhaust emissions and in particular suspension in air of road dust are major contributors to exceedances at street locations of the PM10 air quality standards in various European cities. Furthermore, wear-related PM emissions that contain high concentrations of metals may (despite their limited contribution to the mass of nonexhaust emissions) cause significant health risks for the population, especially those living near intensely trafficked locations. To quantify the existing health risks, targeted research is required on wear emissions, their dispersion in urban areas, population exposure, and its effects on health. Such information will be crucial for environmental policymakers as an input for discussions on the need to develop control strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need for more efficient methods giving insight into the complex mechanisms of neurotoxicity. Testing strategies including in vitro methods have been proposed to comply with this requirement. With the present study we aimed to develop a novel in vitro approach which mimics in vivo complexity, detects neurotoxicity comprehensively, and provides mechanistic insight. For this purpose we combined rat primary re-aggregating brain cell cultures with a mass spectrometry (MS)-based metabolomics approach. For the proof of principle we treated developing re-aggregating brain cell cultures for 48h with the neurotoxicant methyl mercury chloride (0.1-100muM) and the brain stimulant caffeine (1-100muM) and acquired cellular metabolic profiles. To detect toxicant-induced metabolic alterations the profiles were analysed using commercial software which revealed patterns in the multi-parametric dataset by principal component analyses (PCA), and recognised the most significantly altered metabolites. PCA revealed concentration-dependent cluster formations for methyl mercury chloride (0.1-1muM), and treatment-dependent cluster formations for caffeine (1-100muM) at sub-cytotoxic concentrations. Four relevant metabolites responsible for the concentration-dependent alterations following methyl mercury chloride treatment could be identified using MS-MS fragmentation analysis. These were gamma-aminobutyric acid, choline, glutamine, creatine and spermine. Their respective mass ion intensities demonstrated metabolic alterations in line with the literature and suggest that the metabolites could be biomarkers for mechanisms of neurotoxicity or neuroprotection. In addition, we evaluated whether the approach could identify neurotoxic potential by testing eight compounds which have target organ toxicity in the liver, kidney or brain at sub-cytotoxic concentrations. PCA revealed cluster formations largely dependent on target organ toxicity indicating possible potential for the development of a neurotoxicity prediction model. With such results it could be useful to perform a validation study to determine the reliability, relevance and applicability of this approach to neurotoxicity screening. Thus, for the first time we show the benefits and utility of in vitro metabolomics to comprehensively detect neurotoxicity and to discover new biomarkers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Exposure to fine particulate matter air pollutants (PM2.5) affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. Results: Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1) crustal material, 2) wear of steel automotive components, 3) gasoline combustion, 4) speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score), heart rate variability (+16%), supraventricular ectopic beats (+39%), % neutrophils (+7%), % lymphocytes (-10%), red blood cell volume MCV (+1%), von Willebrand Factor (+9%), blood urea nitrogen (+7%), and protein C (-11%). The "crustal" factor (but not the "collapsed" source) was associated with MCL (+3%) and serum uric acid concentrations (+5%). Controlling for potential confounders had little influence on the effect estimates. Conclusion: PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits proinflammatory and pro-thrombotic responses in healthy young men. [Authors]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The earliest sign of neurotoxicity observed after exposure of three-dimensional brain cell cultures to low concentrations of mercury compounds is a microglial reaction. We hypothesized that an induction of apoptosis by mercury compounds could be an activating signal of the microglial reaction. Aggregating brain cell cultures of fetal rat telencephalon were treated for 10 days with either mercury chloride or monomethylmercury chloride at noncytotoxic concentrations during two developmental periods: from day 5 to 15, corresponding to an immature stage, and from day 25 to 35 corresponding to a mature stage. Apoptosis was evaluated by the TUNEL technique. It was found that both mercury compounds caused a significant increase in the number of apoptotic cells, but exclusively in immature cultures exhibiting also spontaneous apoptosis. Double staining by the TUNEL technique combined with either neuronal or astroglial markers revealed that the proportion of cells undergoing apoptosis was highest for astrocytes. Furthermore neither an association nor a colocalization was found between apoptotic cells and microglial cells. In conclusion, it appears that the induction of apoptosis by mercury compounds in immature cells is only an acceleration of a spontaneously occurring process, and that it is not a directly related to the early microglial reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional cell culture system was used as a model to study the influence of low levels of mercury in the developing brain. Aggregating cell cultures of fetal rat telencephalon were treated for 10 days either during an early developmental period (i.e., between days 5 and 15 in vitro) or during a phase of advanced maturation (i.e., between days 25 and 35) with mercury. An inorganic (HgCl2) and an organic mercury compound (monomethylmercury chloride, MeHgCl) were examined. By monitoring changes in cell type-specific enzymes activities, the concentration-dependent toxicity of the compounds was determined. In immature cultures, a general cytotoxicity was observed at 10(-6) M for both mercury compounds. In these cultures, HgCl2 appeared somewhat more toxic than MeHgCl. However, no appreciable demethylation of MeHgCl could be detected, indicating similar toxic potencies for both mercury compounds. In highly differentiated cultures, by contrast, MeHgCl exhibited a higher toxic potency than HgCl2. In addition, at 10(-6) M, MeHgCl showed pronounced neuron-specific toxicity. Below the cytotoxic concentrations, distinct glia-specific reactions could be observed with both mercury compounds. An increase in the immunoreactivity for glial fibrillary acidic protein, typical for gliosis, could be observed at concentrations between 10(-9) M and 10(-7) M in immature cultures, and between 10(-8) M and 3 x 10(-5) M in highly differentiated cultures. A conspicuous increase in the number and clustering of GSI-B4 lectin-binding cells, indicating a microglial response, was found at concentrations between 10(-10) M and 10(-7) M. These development-dependent and cell type-specific effects may reflect the pathogenic potential of long-term exposure to subclinical doses of mercury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world-class Idrija mercury deposit (western Slovenia) is hosted by highly deformed Permocarboniferous to Middle Triassic sedimentary rocks within a complex tectonic structure at the transition between the External Dinarides and the Southern Alps. Concordant and discordant mineralization formed concomitant with Middle Triassic bimodal volcanism in an aborted rift. A multiple isotopic (C, O, S) investigation of host rocks and ore minerals was performed to put constraints on the source and composition of the fluid, and the hydrothermal alteration. The distributions of the delta(13)C and delta(18)O values of host and gangue carbonates are indicative of a fracture-controlled hydrothermal system, with locally high fluid-rock ratios. Quantitative modeling of the delta(13)C and delta(18)O covariation for host carbonates during temperature dependent fluid-rock interaction, and concomitant precipitation of void-filling dolomites points to a slightly acidic hydrothermal fluid (delta(13)Capproximate to-4parts per thousand and delta(18)Oapproximate to+10parts per thousand), which most likely evolved during isotopic exchange with carbonates under low fluid/rock ratios. The delta(34)S values of hydrothermal and sedimentary sulfur minerals were used to re-evaluate the previously proposed magmatic and evaporitic sulfur sources for the mineralization, and to assess the importance of other possible sulfur sources such as the contemporaneous seawater sulfate, sedimentary pyrite, and organic sulfur compounds. The delta(34)S values of the sulfides show a large variation at deposit down to hand-specimen scale. They range for cinnabar and pyrite from -19.1 to +22.8parts per thousand, and from -22.4 to +59.6parts per thousand, respectively, suggesting mixing of sulfur from different sources. The peak of delta(34)S values of cinnabar and pyrite close to 0parts per thousand is compatible with ore sulfur derived dominantly from a magmatic fluid and/or from hydrothermal leaching of basement rocks. The similar stratigraphic trends of the delta(34)S values of both cinnabar and pyrite suggest a minor contribution of sedimentary sulfur (pyrite and organic sulfur) to the ore formation. Some of the positive delta(34)S values are probably derived from thermochemical reduction of evaporitic and contemporaneous seawater sulfates.