45 resultados para Melt Compositions

em Université de Lausanne, Switzerland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study was initiated to investigate partial melting within the high-grade metamorphic rocks beneath the Little Cottonwood contact aureole (Utah, USA), in order to understand the melt generation, melt migration, and geometry of initial melt distribution on grain scale during crustal anatexis. The emplacement of the Little Cottonwood stock produced a contact aureole in the pelitic host rocks of the Big Cottonwood formation (BC). Metamorphic isogrades in pelitic rocks range form biotite to 2nd sillimanite grade as a function of distance from the contact. Migmatites are restricted to the highest grade and resulted form partial melting of the BC formation rocks. First melt was produced by a combined muscovite/biotite dehydration reaction in the sillimanite + k-feldspar stability field. Melt extraction from the pelites resulted in restites (magnetite + cordierite + alumosilicate ± biotite) surrounded by feldspar enriched quartzite zones. This texture is the result of gradual infiltration of partial melts into the quartzite. Larger, discrete melt accumulation occurred in extensional or transpressional domains such as boudin necks, veins, and ductile shear zones. Melt composition are Si02- rich, crystallized as pegmatites, and apparently were very mobile. They were able to infiltrate the quartzite pervaisivly. These melts are similar in composition to first melts produced in the hydrothermal partial melt experiments at 2kbar between 700 - 800°C on fine grained high metamorphic rocks (andalusite-cordierited-biotite-zone) of the BC formation. The experimental melts are water rich and in disequilibrium with the melting rock. Initial melt composition is heterogeneous for short run duration, reflective a lack of chemical equilibrium between individual melt pools. Rock core scale heterogeneity decreased with time indicating partial homogenization of melt compositions. A simultaneous shift of melt composition to higher silica content with time was observed. The silica content of the melt increased due to local melt/mineral reactions. Melt textures indicate that reactive melt transport is most efficient along grain boundaries rimmed by dissimilar grains. Melt heterogeneity resulted in chemical potential gradients which are major driving forces for initial melt migration and govern melt distribution during initial melting. An additional subject of the thesis is the crystal size distributions of opaque minerals in a fine-grained, high-grade meta-pelite of the Big Cottonwood which were obtained from 3D X-ray tomography (uCT) and 2D thin section analysis. µCT delivers accurate size distributions within a restricted range (~ a factor of 20 in size in a single 3D image), while the absolute number of crystals is difficult to obtain from these sparsely distributed, small crystals on the basis of 2D images. Crystal size distributions obtained from both methods are otherwise similar. - Ce travail de recherche a été entrepris dans le but d'étudier les processus de fusion partielle dans les roches fortement métamorphiques de l'auréole de contact de Little Cottonwood (Utah, USA) et ceci afin de comprendre la génération de liquide de fusion, la migration de ces liquides et la géométrie de la distribution initiale des liquides de fusion à l'échelle du grain durant l'anatexie de la croûte. L'emplacement du petit massif intrusif de Little Cottonwood a produit une auréole de contact dans les roches pélitiques encaissantes appartenant à la Foimation du Big Cottonwood (BC). Les isogrades métamorphiques dans les roches pélitiques varient de l'isograde de la biotite à la deuxième isograde de la sillimanite en fonction de la distance par rapport au massif intrusif. Les migmatites sont restreintes aux zones montrant le plus haut degré métamorphique et résultent de la fusion partielle des roches de la Formation de BC. Le premier liquide de fusion a été produit par la réaction de déshydratation combinée de la muscovite et de la biotite dans le champ de stabilité du feldspath potassique Pt de la sillimanite. L'extraction du liquide de fusion des pélites forme des restites (magnétites + cordiérite + aluminosilicate ± biotite) entourées par des zones de quartzites enrichies en feldspath. Cette texture est le résultat de l'infiltration graduelle du liquide de fusion partielle dans les quartzites. Des accumulations distinctes et plus larges de liquide de fusion ont lieu dans des domaines d'extension ou de transpression tels que les boudins, les veines, et les zones de cisaillement ductile. La composition des liquides de fusion est similaire à celle des liquides pegmatoïdes, et ces liquides sont apparemment très mobiles et capables d'infiltrer les quartzites. Ces liquides de fusion ont la même composition que les premiers liquides produits dans les expériences hydrotheunales de fusion partielle à 2kbar et entre 700-800° C sur les roches finement grenues et hautement métamorphiques (andalousite-cordiérite-biotite zone) de la Formation de BC. Les liquides de fusion obtenus expérimentalement sont riches en eau et sont en déséquilibre avec la roche en fusion. La composition initiale des liquides de fusion est hétérogène pour les expériences de courte durée et reflète l'absence d'équilibre chimique entre les différentes zones d'accumulation des liquides de fusion. L'hétérogénéité à l'échelle du noyau s'estompe avec le temps et témoigne de l'homogénéisation de la composition des liquides de fusion. Par ailleurs, on observe parallèlement un décalage de la composition des liquides vers des compositions plus riches en silice au cours du temps. Le contenu en silice des liquides de fusion évolue vers un liquide pegmatitique en raison des réactions liquides/minéraux. Les textures des liquides de fusion indiquent que le transport des liquides est plus efficace le long des bordures de grains bordés par des grains différents. Aucun changement apparent du volume total n'est visible. L'hétérogénéité des liquides s'accompagne d'un gradient de potentiel chimique qui sert de moteur principal à la migration des liquides et à la distribution des liquides durant la fusion. Un sujet complémentaire de ce travail de thèse réside dans l'étude de la distribution de la taille des cristaux opaques dans les pélites finement grenues et fortement métamorphiques de la Formation de Big Cottonwood. Les distributions de taille ont été obtenues suite à l'analyse d'images 3D acquise par tomographie ainsi que par analyse de lames minces. La microtomographie par rayon X fournit une distribution de taille précise sur une marge restreinte (- un facteur de taille 20 dans une seule image 3D), alors que le nombre absolu de cristaux est difficile à obtenir sur la base d'image 2D en raison de la petite taille et de la faible abondance de ces cristaux. Les distributions de taille obtenues par les deux méthodes sont sinon similaire. Abstact: Chemical differentiation of the primitive Earth was due to melting and separation of melts. Today, melt generation and emplacement is still the dominant process for the growth of the crust. Most granite formation is due to partial melting of the lower crust, followed by transport of magma through the crust to the shallow crust where it is emplaced. Partial melting and melt segregation are essential steps before such a granitic magma can ascent through the crust. The chemistry and physics of partial melting and segregation is complex. Hence detailed studies, in which field observations yield critical information that can be compared to experimental observations, are crucial to the understanding of these fundamental processes that lead and are leading to the chemical stratification of the Earth. The research presented in this thesis is a combined field and experimental study of partial melting of high-grade meta-pelitic rocks of the Little Cottonwood contact aureole (Utah, USA). Contact metamorphic rocks are ideal for textural studies of melt generation, since the relatively short times of the metamorphic event prevents much of the recrystallization which plagues textural studies of lower crustal rocks. The purpose of the study is to characterize melt generation, identify melting reactions, and to constrain melt formation, segregation and migration mechanisms. In parallel an experimental study was undertaken to investigate melt in the high grade meta pelitic rocks, to confirm melt composition, and to compare textures of the partial molten rock cores in the absence of deformation. Results show that a pegmatoidal melt is produced by partial melting of the pelitic rocks. This melt is highly mobile. It is capable of pervasive infiltration of the adjacent quartzite. Infiltration results in rounded quartz grains bordered by a thin feldspar rim. Using computed micro X-ray tomography these melt networks can be imaged. The infiltrated melt leads to rheological weakening and to a decompaction of the solid quartzite. Such decompaction can explain the recent discovery of abundant xenocrysts in many magmas, since it favors the isolation of mineral grains. Pervasive infiltration is apparently strongly influenced by melt viscosity and melt-crystal wetting behavior, both of which depend on the water content of melt and the temperature. In all experiments the first melt is produced on grain boundaries, dominantly by the local minerals. Grain scale heterogeneity of a melting rock leads thus to chemical concentration gradients in the melt, which are the driving force for initial melt migration. Pervasive melt films along grain boundaries leading to an interconnected network are immediately established. The initial chemical heterogeneities in the melt diminish with time. Résumé large public: La différenciation chimique de la Terre primitive est la conséquence de la fusion des roches et de la séparation des liquides qui en résultent. Aujourd'hui, la production de liquide magmatique est toujours le mécanisme dominant pour la croissance de la croûte terrestre. Ainsi la formation de la plupart des granites est un processus qui implique la production de magma par fusion partielle de la croûte inférieure, la migration de ces magmas à travers la croûte et finalement son emplacement dans les niveaux superficielle de la croûte terrestre. Au cours de cette évolution, les processus de fusion partielle et de ségrégation sont des étapes indispensables à l'ascension des granites à travers la croûte. Les conditions physico-chimiques nécessaires à la fusion partielle et à l'extraction de ces liquides sont complexes. C'est pourquoi des études détaillées des processus de fusion partielle sont cruciales pour la compréhension de ces mécanismes fondamentaux responsables de la stratification chimique de la Terre. Parmi ces études, les observations de terrain apportent notamment des informations déterminantes qui peuvent être comparées aux données expérimentales. Le travail de recherche présenté dans ce mémoire de thèse associe études de terrain et données expérimentales sur la fusion partielle des roches pélitiques de haut degré métamorphiques provenant de l'auréole de contact de Little Cottonwood (Utah, USA). Les roches du métamorphisme de contact sont idéales pour l'étude de la folination de liquide de fusion. En effet, la durée relativement courte de ce type d'événement métamorphique prévient en grande partie la recristallisation qui perturbe les études de texture des roches dans la croûte inférieure. Le but de cette étude est de caractériser la génération des liquides de fusion, d'identifier les réactions responsables de la fusion de ces roches et de contraindre la formation de ces liquides et leur mécanisme de ségrégation et de migration. Parallèlement, des travaux expérimentaux ont été entrepris pour reproduire la fusion partielle de ces roches en laboratoire. Cette étude a été effectuée dans le but de confirmer la composition chimique des liquides, et de comparer les textures obtenues en l'absence de déformation. Les résultats montrent qu'un liquide de fusion pegmatoïde est produit par fusion partielle des roches pélitiques. La grande mobilité de ce liquide permet une infiltration pénétrative dans les quarzites. Ces infiltrations se manifestent par des grains de quartz arrondis entourés par une fine bordure de feldspath. L'utilisation de la tomography à rayons X a permis d'obtenir des images de ce réseau de liquide de fusion. L'infiltration de liquide de fusion entraîne un affaiblissement de la rhéologie de la roche ainsi qu'une décompaction des quartzites massifs. Une telle décompaction peut expliquer la découverte récente d'abondants xénocristaux dans beaucoup de magmas, puisque elle favorise l'isolation des minéraux. L'infiltration pénétrative est apparemment fortement influencée par la viscosité du fluide de fusion et le comportement de la tension superficielle entre les cristaux et le liquide, les deux étant dépendant du contenu en eau dans le liquide de fusion et de la température. Dans toutes les expériences, le premier liquide est produit sur les bordures de grains, principalement par les minéraux locaux. L'hétérogénéité à l'échelle des grains d'une roche en fusion conduit donc à un gradient de concentration chimique dans le liquide, qui sert de moteur à l'initiation de la migration du liquide. Des fines couches de liquide de fusion le long de bordures de grains formant un réseau enchevêtré s'établit immédiatement. Les hétérogénéités chimiques initiales dans le liquide s'estompent avec le temps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present new data on the spatial variability of peridotite composition across a kilometer-scale mantle shear zone within the Lanzo massif (Western Alps, Italy). The shear zone separates the central from the northern part of the massif. Plagioclase peridotite shows gradually increasing deformation towards the shear zone, from porphyroclastic to mylonitic textures in the central body, while the northern body is composed of porphyroclastic rocks. The peridotite displays a large range of compositions, from fertile peridotite to refractory harzburgite and dunite. Deformed peridotites (proto-mylonite and mylonites) tend to be compositionally more homogeneous and fertile than weakly deformed peridotites. The composition of most plagioclase peridotites show rather high and constant (Ce/Yb) (N) ratios, and Yb (N) that cannot be explained by any simple melting model. Instead, refertilization modeling, consisting of melt increments from spinel peridotite sources, particularly with E-MORB melt, reasonably reproduces the plagioclase peridotite whole rock composition. Combined with constraints from Ce-Nb and Ce-Th systematics, we speculate that peridotites such as those from Lanzo record pervasive refertilization processes in the thermal boundary layer. In this scenario, mantle shear zones might act as important areas of melt focusing in the upper mantle that separates the thermal boundary layer from the conductively cooled mantle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of a field and microstructural study between the northern and the central bodies of the Lanzo plagioclase peridotite massif (NW Italy) indicate that the spatial distribution of deformation is asymmetric across kilometre-scale mantle shear zones. The southwestern part of the shear zone (footwall) shows a gradually increasing degree of deformation from porphyroclastic peridotites to mylonite, whereas the northeastern part (hanging wall) quickly grades into weakly deformed peridotites. Discordant gabbroic and basaltic dykes are asymmetrically distributed and far more abundant in the footwall of the shear zone. The porphyroclastic peridotite displays porphyroclastic zones and domains of igneous crystallization whereas mylonites are characterized by elongated porphyroclasts, embedded between fine-grained, polycrystalline bands of olivine, plagioclase, clinopyroxene, orthopyroxene, spinel, rare titanian pargasite, and domains of recrystallized olivine. Two types of melt impregnation textures have been found: (1) clinopyroxene porphyroclasts incongruently reacted with migrating melt to form orthopyroxene plagioclase; (2) olivine porphyroclasts are partially replaced by interstitial orthopyroxene. The meltrock reaction textures tend to disappear in the mylonites, indicating that deformation in the mylonite continued under subsolidus conditions. The pyroxene chemistry is correlated with grain size. High-Al pyroxene cores indicate high temperatures (11001030C), whereas low-Al neoblasts display lower final equilibration temperatures (860C). The spinel Cr-number [molar Cr/(Cr Al)] and TiO2 concentrations show extreme variability covering almost the entire range known from abyssal peridotites. The spinel compositions of porphyroclastic peridotites from the central body are more variable than spinel from mylonite, mylonite with ultra-mylonite bands, and porphyroclastic rocks of the northern body. The spinel compositions probably indicate disequilibrium and would favour rapid cooling, and a faster exhumation of the central peridotite body, relative to the northern one. Our results indicate that melt migration and high-temperature deformation are juxtaposed both in time and space. Meltrock reaction may have caused grain-size reduction, which in turn led to localization of deformation. It is likely that melt-lubricated, actively deforming peridotites acted as melt focusing zones, with permeabilities higher than the surrounding, less deformed peridotites. Later, under subsolidus conditions, pinning in polycrystalline bands in the mylonites inhibited substantial grain growth and led to permanent weak zones in the upper mantle peridotite, with a permeability that is lower than in the weakly deformed peridotites. Such an inversion in permeability might explain why actively deforming, fine-grained peridotite mylonite acted as a permeability barrier and why ascending mafic melts might terminate and crystallize as gabbros along actively deforming shear zones. Melt-lubricated mantle shear zones provide a mechanism for explaining the discontinuous distribution of gabbros in oceancontinent transition zones, oceanic core complexes and ultraslow-spreading ridges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents field, petrographic-structural and geochemical data on spinet and plagioclase peridotites from the southern domain of the Lanzo ophiolitic peridotite massif (Western Alps). Spinet lherzolites, harzburgites and dunites crop out at Mt. Arpone and Mt. Musine. Field evidence indicates that pristine porphyroclastic spinet lherzolites are transformed to coarse granular spinet harzburgites, which are in turn overprinted by plagioclase peridotites, while strongly depleted spinet harzburgite and dunite bands and bodies replace the plagioclase peridotites. On the northern flank of Mt. Arpone, deformed, porphyroclastic (lithospheric) lherzolites, with diffuse pyroxenite banding, represent the oldest spinel-facies rocks. They show microstructures of a composite subsolidus evolution, suggesting provenance from deeper (asthenospheric) mantle levels and accretion to the lithosphere. These protoliths are locally transformed to coarse granular (reactive) spinet harzburgites and dunites, which show textures reminiscent of melt/rock reaction and geochemical characteristics suggesting that they are products of peridotite interaction with reactively percolating melts. Geochemical data and modelling suggest that <1-5% fractional melting of spinel-facies DMM produced the injected melts. Plagioclase peridotites are hybrid rocks resulting from pre-existing spinet peridotites and variable enrichment of plagioclase and micro-gabbroic material by percolating melts. The impregnating melts attained silica-saturation, as testified by widespread orthopyroxene replacement of olivine, during open system migration in the lithosphere. At Mt. Musine, coarse granular spinet harzburgite and dunite bodies replace the plagioclase peridotites. Most of these replacive, refractory peridotites have interstitial magmatic clinopyroxene with trace element compositions in equilibrium with MORB, while some Cpx have REE-depleted patterns suggesting transient geochemical features of the migrating MORB-type melts, acquired by interaction with the ambient plagioclase peridotite. These replacive spinet harzburgite and dunite bodies are interpreted as channels exploited for focused and reactive migration of silica-undersaturated melts with aggregate MORB compositions. Such melts were unrelated to the silica-saturated melts that refertilized the pre-existing plagioclase peridotites. Finally, MORB melt migration occurred along open fractures, now recorded as gabbroic dikes. Our data document the complexity of rock-types and mantle processes in the South Lanzo peridotite massif and describe a composite tectonic and magmatic scenario that is not consistent with the ``asthenospheric scenario'' proposed by previous authors. We envisage a ``transitional scenario'' in which extending subcontinental lithospheric mantle was strongly modified (both depleted and refertilized) by early melts with MORB-affinity formed by decompression partial melting of the upwelling asthenosphere, during pre-oceanic rifting and lithospheric thinning in the Ligurian Tethys realm. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen and oxygen isotopes of water and the carbon isotope composition of dissolved inorganic carbon (DIC) from different aquifers at an industrial site, highly contaminated by organic pollutants representing residues of the former gas production, have been used as natural tracers to characterize the hydrologic system. On the basis of their stable isotope compositions as well as the seasonal variations, different groups of waters (precipitation, surface waters, groundwaters and mineral waters) as well as seasonably variable processes of mixing between these waters can clearly be distinguished. In addition, reservoir effects and infiltration rates can be estimated. In the northern part of the site an influence of uprising mineral waters within the Quaternary aquifers, presumably along a fault zone, can be recognized. Marginal infiltration from the Neckar River in the cast and surface water infiltration adjacent to a steep hill on the western edge of the site with an infiltration rate of about one month can also be resolved through the seasonal variation. Quaternary aquifers closer to the centre of the site show no seasonal variations, except for one borehole close to a former mill channel and another borehole adjacent to a rain water channel. Distinct carbon isotope compositions and concentrations of DIC for these different groups of waters reflect variable influence of different components of the natural carbon cycle: dissolution of marine carbonates in the mineral waters, biogenic, soil-derived CO2 in ground- and surface waters, as well as additional influence of atmospheric CO2 for the surface waters. Many Quaternary aquifer waters have, however, distinctly lower delta(13)C(DIC) values and higher DIC concentrations compared to those expected for natural waters. Given the location of contaminated groundwaters at this site but also in the industrially well-developed valley outside of this site, the most likely source for the low C-13(DIC) values is a biodegradation of anthropogenic organic substances, in particular the tar oils at the site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sections through an oceanic plateau are preserved in tectonic slices in the Western Cordillera of Ecuador (South America). The San Juan section is a sequence of mafic-ultramafic cumulates. To establish that these plutonic rocks formed in an oceanic plateau setting, we have developed criteria that discriminate intrusions of oceanic plateaus from those of other tectonic settings. The mineralogy and crystallization sequence of the cumulates are similar to those of intra-plate magmas. Clinopyroxene predominates throughout, and orthopyroxene is only a minor component. Rocks of intermediate composition are absent, and hornblende is restricted to the uppermost massive gabbros within the sequence. The ultramafic cumulates are very depleted in light rare-earth elements (LREE), whereas the gabbros have flat or slightly enriched LREE patterns. The composition of the basaltic liquid in equilibrium with the peridotite, calculated using olivine compositions and REE contents of clinopyroxene, contains between 16% and 8% MgO and has a flat REE pattern. This melt is geochemically similar to other accreted oceanic plateau basalts, isotropic gabbros, and differentiated sills in western Ecuador. The Ecuadorian intrusive and extrusive rocks have a narrow range of epsilonNd(i) (+8 to +5) and have a rather large range of Pb isotopic ratios. Pb isotope systematics of the San Juan plutonic rocks and mineral separates lie along a mixing line between the depleted mantle (DMM) and the enriched-plume end members. This suggests that the Ecuadorian plutonic rocks generated from the mixing of two mantle sources, a depleted mid-oceanic ridge basalt (MORB) source and an enriched one. The latter is characterized by high (Pb-207/Pb-204)(i) ratios and could reflect a contamination by recycled either lower continental crust or oceanic pelagic sediments and (or) altered oceanic crust (enriched mantle type I, EMI). These data suggest that the San Juan sequence represents the plutonic components of an Early Cretaceous oceanic plateau, which accreted in the Late Cretaceous to the Ecuadorian margin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major and trace element compositions, stable H and 0 isotope compositions and Fe 31 contents of amphibole megacrysts of Pliocene-Pleistocene alkaline basalts have been investigated to obtain information on the origin of mantle fluids beneath the Carpathian-Pannonian region. The megacrysts have been regarded as igneous cumulates formed in the mantle and brought to the surface by the basaltic magma. The studied amphiboles have oxygen isotope compositions (5.4 +/- 0.2 %., 1 sigma), supporting their primary mantle origin. Even within the small 6180 variation observed, correlations with major and trace elements are detected. The negative delta(18)O-MgO and the positive delta(18)O-La/Sm(N) correlations are interpreted to have resulted from varying degrees of partial melting. The halogen (F, Cl) contents are very low (< 0.1 wt. %), however, a firm negative (F+Cl)-MgO correlation (R(2) = 0.84) can be related to the Mg-Cl avoidance in the amphibole structure. The relationships between water contents, H isotope compositions and Fe 31 contents of the amphibole megacrysts revealed degassing. Selected undegassed amphibole megacrysts show a wide 813 range from -80 to -20 parts per thousand. The low delta D value is characteristic of the normal mantle, whereas the high delta D values may indicate the influence of fluids released from subducted oceanic crust. The chemical and isotopic evidence collectively suggest that formation of the amphibole megacrysts is related to fluid metasomatism, whereas direct melt addition is insignificant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One hypothesis for the origin of alkaline lavas erupted on oceanic islands and in intracontinental settings is that they represent the melts of amphibole-rich veins in the lithosphere (or melts of their dehydrated equivalents if metasomatized lithosphere is recycled into the convecting mantle). Amphibole-rich veins are interpreted as cumulates produced by crystallization of low-degree melts of the underlying asthenosphere as they ascend through the lithosphere. We present the results of trace-element modelling of the formation and melting of veins formed in this way with the goal of testing this hypothesis and for predicting how variability in the formation and subsequent melting of such cumulates (and adjacent cryptically and modally metasomatized lithospheric peridotite) would be manifested in magmas generated by such a process. Because the high-pressure phase equilibria of hydrous near-solidus melts of garnet lherzolite are poorly constrained and given the likely high variability of the hypothesized accumulation and remelting processes, we used Monte Carlo techniques to estimate how uncertainties in the model parameters (e.g. the compositions of the asthenospheric sources, their trace-element contents, and their degree of melting; the modal proportions of crystallizing phases, including accessory phases, as the asthenospheric partial melts ascend and crystallize in the lithosphere; the amount of metasomatism of the peridotitic country rock; the degree of melting of the cumulates and the amount of melt derived from the metasomatized country rock) propagate through the process and manifest themselves as variability in the trace-element contents and radiogenic isotopic ratios of model vein compositions and erupted alkaline magma compositions. We then compare the results of the models with amphibole observed in lithospheric veins and with oceanic and continental alkaline magmas. While the trace-element patterns of the near-solidus peridotite melts, the initial anhydrous cumulate assemblage (clinopyroxene +/- garnet +/- olivine +/- orthopyroxene), and the modelled coexisting liquids do not match the patterns observed in alkaline lavas, our calculations show that with further crystallization and the appearance of amphibole (and accessory minerals such as rutile, ilmenite, apatite, etc.) the calculated cumulate assemblages have trace-element patterns that closely match those observed in the veins and lavas. These calculated hydrous cumulate assemblages are highly enriched in incompatible trace elements and share many similarities with the trace-element patterns of alkaline basalts observed in oceanic or continental setting such as positive Nb/La, negative Ce/Pb, and similiar slopes of the rare earth elements. By varying the proportions of trapped liquid and thus simulating the cryptic and modal metasomatism observed in peridotite that surrounds these veins, we can model the variations in Ba/Nb, Ce/Pb, and Nb/U ratios that are observed in alkaline basalts. If the isotopic compositions of the initial low-degree peridotite melts are similar to the range observed in mid-ocean ridge basalt, our model calculations produce cumulates that would have isotopic compositions similar to those observed in most alkaline ocean island basalt (OIB) and continental magmas after similar to 0 center dot 15 Gyr. However, to produce alkaline basalts with HIMU isotopic compositions requires much longer residence times (i.e. 1-2 Gyr), consistent with subduction and recycling of metasomatized lithosphere through the mantle. such as a heterogeneous asthenosphere. These modelling results support the interpretation proposed by various researchers that amphibole-bearing veins represent cumulates formed during the differentiation of a volatile-bearing low-degree peridotite melt and that these cumulates are significant components of the sources of alkaline OIB and continental magmas. The results of the forward models provide the potential for detailed tests of this class of hypotheses for the origin of alkaline magmas worldwide and for interpreting major and minor aspects of the geochemical variability of these magmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable carbon and oxygen isotope analyses were conducted on pedogenic needle fibre calcite (NFC) from seven sites in areas with roughly similar temperate climates in Western Europe, including the Swiss Jura Mountains, eastern and southern France, northern Wales, and north-eastern Spain. The δ(13)C values (-12.5 to-6.8 0/00 Vienna Pee Dee Belemnite (VPDB)) record the predominant C(3) vegetation cover at the sites. A good correlation was found between mean monthly climatic parameters (air temperature, number of frost days, humidity, and precipitation) and δ(18)O values (-7.8 to-3.40/00 VPDB) of all the NFC. Similar seasonal variations of δ(18)O values for monthly NFC samples from the Swiss sites and those of mean monthly δ(18)O values of local precipitation and meteorological data point out precipitation and preferential growth/or recrystallisation of the pedogenic needle calcite during dry seasons. These covariations indicate the potential of stable isotope compositions of preserved NFC in fossil soil horizons as a promising tool for palaeoenvironmental reconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly evolved rhyolite glass plus near-solidus mineral assemblages in voluminous, dacitic, crystal-rich ignimbrites provide an opportunity to evaluate the late magmatic evolution of granodiorite batholiths. This study reports laser-ablation ICP-MS analyses of trace element concentrations in feldspars, hornblende, biotite, titanite, zircon, magnetite, and interstitial glass of the crystal-rich Fish Canyon Tuff. The high-silica rhyolite glass is characterized by relatively high concentrations of feldspar-compatible elements (e.g., 100 ppm Sr and 500 ppm Ba) and low concentrations of Y (< 7 ppm) and HREE (&SIM; 1 ppm Yb), hence high LREE/HREE (Ce/Yb > 40) compared to many well-studied high-silica rhyolite glasses and whole-rock compositions. Most minerals record some trace element heterogeneities, with, in particular, one large hornblende phenocryst showing four- to six-fold core-to-rim increases in Sr and Ba coupled with a decrease in Sc. The depletions of Y and HREE in the Fish Canyon glass relative to the whole-rock composition (concentrations in glass &SIM; 30% of those in whole rocks) reflect late crystallization of phases wherein these elements were compatible. As garnet is not stable at the low-P conditions at which the Fish Canyon magma crystallized, we show that a combination of modally abundant hornblende (&SIM; 4%) + titanite (&SIM; 0.5-1%) and the highly polymerized nature of the rhyolitic liquid led to Y and HREE depletions in melt. Relatively high Sr and Ba contents in glass and rimward Sr and Ba increases in euhedral, concentrically zoned hornblende suggest partial feldspar dissolution and a late release of these elements to the melt as hornblende was crystallizing, in agreement with textural evidence for feldspar (and quartz) resorption. Both observations are consistent with thermal rejuvenation of the magma body prior to eruption, during which the proportion of melt increased via feldspar and quartz dissolution, even as hydrous and accessory phases were crystallizing. Sr/Y in Fish Canyon glass (13-18) is lower than the typical ``adakitic'' value (> 40), confirming that high Sr/Y is a reliable indicator of high-pressure magma generation and/or differentiation wherein garnet is implicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent isotopic and biochronologic dating has demonstrated that the Gets nappe contains remnants of the oldest part of the oceanic crust of the Alpine Tethys. The ophiolites are associated with deep sea sediments, platform carbonates and continental crustal elements suggesting a transitional environment between continental and oceanic crust. Therefore, the ophiolites from the Gets nappe provide the opportunity to assess the nature of mantle source and the magma evolution during the final rifting stage of the European lithosphere. Trace clement analyses of mafic rocks can he divided into two sets: (1) P, Zr and Y contents are consistent with those of mid-ocean ridge basalts and REE patterns have a P-MORB affinity. (2) P,Zr Ti and Y contents are compatible with within-plate basalts and are characterized by REE spectra similar to that of T-MORB. Both have Nd isotopic compositions similar to those of synrift magma of the Red Sea and to the Rhine Graben. The model ages are in agreement with an LREE-enriched subcontinental mantle source derived from depleted mantle 800 to 900 Ma ago. Minor, trace element and Sm-Nd compositions suggest that these rocks are basaltic relies of an earliest stage of oceanic spreading i.e. an embryonic ocean. Comparison between REE patterns, Nd and Sr isotope compositions, isotopic and biochronologic ages from different Alpine Tethys ophiolites shows that samples with enriched LREE are from the older ophiolitic suites and are relies of the embryonic ocean floor. Later phases of ocean spreading are characterized by basalts that are depleted in LREE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the world's largest wollastonite deposits was formed at the contact of the northern Hunter Mountain Batholith (California, USA) in Paleozoic sediments. Wollastonite occurs as zones of variable thickness surrounding layers or nodules of quartzite in limestones. A minimum formation temperature of 650 degrees C is estimated from isolated periclase-bearing lenses in that area. Contact metamorphism of siliceous carbonates has produced mineral assemblages that are consistent with heterogeneous, and partly limited infiltration of water-rich fluids, compatible with O-18/O-16 and C-13/C-12 isotopic patterns recorded in carbonates. Oxygen isotope compositions of wollastonites in the study area may also not require infiltration of large quantities of externally-derived fluids that were out of equilibrium with the rocks. 8180 values of wollastonite are high (14.8 parts per thousand to 25.0 parts per thousand; median: 19.7 parts per thousand) and close to those of the host limestone (19.7 parts per thousand to 28 parts per thousand; median: 24.9 parts per thousand) and quartz (18.0 parts per thousand. to 29.1 parts per thousand; median: 22.6 parts per thousand). Isotopic disequilibrium exists at quartz/wollastonite and wollastonite/calcite boundaries. Therefore, classical batch/Rayleigh fractionation models based on reactant and product equilibrium are not applicable to the wollastonite rims. An approach that relies on local instantaneous mass balance for the reactants, based on the wollastonite-forming reaction is suggested as an alternative way to model wollastonite reaction rims. This model reproduces many of the measured delta O-18 values of wollastonite reaction rims of the current study to within +/- 1 parts per thousand, even though the wollastonite compositions vary by almost 10 parts per thousand. (C) 2011 Elsevier B.V. All rights reserved.