8 resultados para Mechanical robot design
em Université de Lausanne, Switzerland
Resumo:
Chronic atrial fibrillation affects millions of people worldwide. Its surgical treatment often fails to restore the transport function of the atrium. This study first introduces the concept of an atrial assist device (AAD) to restore the pump function of the atrium. The AAD is developed to be totally implantable in the human body with a transcutaneous energy transfer system to recharge the implanted battery. The ADD consists of a motorless pump based on artificial muscle technology, positioned on the external surface of the atrium to compress it and restore its muscular activity. A bench model reproduces the function of a fibrillating atrium to assess the circulatory support that this pump can provide. Atripump (Nanopowers SA, Switzerland) is a dome-shaped silicone-coated nitinol actuator 5 mm high, sutured on the external surface of the atrium. A pacemaker-like control unit drives the actuator that compresses the atrium, providing the mechanical support to the blood circulation. Electrical characteristics: the system is composed of one actuator that needs a minimal tension of 15 V and has a maximum current of 1.5 A with a 50% duty cycle. The implantable rechargeable battery is made of a cell having the following specifications: nominal tension of a cell: 4.1 V, tension after 90% of discharge: 3.5 V, nominal capacity of a cell: 163 mA h. The bench model consists of an open circuit made of latex bladder 60 mm in diameter filled with water. The bladder is connected to a vertically positioned tube that is filled to different levels, reproducing changes in cardiac preload. The Atripump is placed on the outer surface of the bladder. Pressure, volume and temperature changes were recorded. The contraction rate was 1 Hz with a power supply of 12 V, 400 mA for 200 ms. Preload ranged from 15 to 21 cm H(2)O. Maximal silicone membrane temperature was 55 degrees C and maximal temperature of the liquid environment was 35 degrees C. The pump produced a maximal work of 16 x 10(-3) J. Maximal volume pumped was 492 ml min(-1). This artificial muscle pump is compact, follows the Starling law and reproduces the hemodynamic performances of a normal atrium. It could represent a new tool to restore the atrial kick in persistent atrial fibrillation.
Resumo:
OBJECTIVE: To test a method that allows automatic set-up of the ventilator controls at the onset of ventilation. DESIGN: Prospective randomized crossover study. SETTING: ICUs in one adult and one children's hospital in Switzerland. PATIENTS: Thirty intubated stable, critically ill patients (20 adults and 10 children). INTERVENTIONS: The patients were ventilated during two 20-min periods using a modified Hamilton AMADEUS ventilator. During the control period the ventilator settings were chosen immediately prior to the study. During the other period individual settings were automatically determined by the ventilatior (AutoInit). MEASUREMENTS AND RESULTS: Pressure, flow, and instantaneous CO2 concentration were measured at the airway opening. From these measurements, series dead space (V(DS)), expiratory time constant (RC), tidal volume (VT, total respiratory frequency (f(tot), minute ventilation (MV), and maximal and mean airway pressure (Paw, max and Paw, mean) were calculated. Arterial blood gases were analyzed at the end of each period. Paw, max was significantly less with the AutoInit ventilator settings while f(tot) was significantly greater (P < 0.05). The other values were not statistically significant. CONCLUSIONS: The AutoInit ventilator settings, which were automatically derived, were acceptable for all patients for a period of 20 min and were not found to be inferior to the control ventilator settings. This makes the AutoInit method potentially useful as an automatic start-up procedure for mechanical ventilation.
Resumo:
OBJECTIVE: To evaluate the influence of nursing on the duration of weaning from mechanical ventilation in patients with chronic obstructive pulmonary disease. DESIGN: Data were collected prospectively over a 1-yr period (study year) and compared with previously collected prospective data recorded in our chronic obstructive pulmonary disease database during a 5-yr period. SETTING: The medical intensive care unit (ICU) of a university hospital. PATIENTS: Eighty-seven patients with chronic obstructive pulmonary disease. Fifteen patients had chronic obstructive pulmonary disease that required mechanical ventilation for acute exacerbation of their disease (study year), and 72 were patients with chronic obstructive pulmonary disease from the previously collected data. INTERVENTIONS: The ICU course (duration of mechanical ventilation, mortality) was recorded, as well as several respiratory parameters (pulmonary function tests and arterial blood gases in stable conditions, and nutritional status), and they were compared with an "index of nursing." MEASUREMENTS AND MAIN RESULTS: We developed an "index of nursing", comparing the effective workforce of the nurses (number and qualifications) with the ideal workforce required by the number of patients and the severity of their diseases. A value of 1.0 represented a perfect match between the needed and the effectively present nurses, whereas a lesser value signified a diminished available workforce. This index was compared with the complications and duration of weaning from mechanical ventilation. During the first 5 yrs, the duration of mechanical ventilation increased progressively from 7.3 +/- 8.0 to 38.2 +/- 25.8 days (p = .006). A significant inverse correlation between the duration of mechanical ventilation and the nursing index (p = .025) was found. In the sixth comparative year, the number of nurses increased (nursing index = 1.05) and the duration of mechanical ventilation decreased to 9.9 +/- 13 days (p < .001, yr 5 vs. yr 6). CONCLUSIONS: The quality of nursing appears to be a measurable and critical factor in the weaning from mechanical ventilation of patients with chronic obstructive pulmonary disease. Below a threshold in the available workforce of ICU nurses, the weaning duration of patients with chronic obstructive pulmonary disease increases dramatically. Therefore, very close attention should be given to the education and number of ICU nurses.
Resumo:
OBJECTIVES: In vitro mechanical injury of articular cartilage is useful to identify events associated with development of post-traumatic osteoarthritis (OA). To date, many in vitro injury models have used animal cartilage despite the greater clinical relevance of human cartilage. We aimed to characterize a new in vitro injury model using elderly human femoral head cartilage and compare its behavior to that of an existing model with adult bovine humeral head cartilage. DESIGN: Mechanical properties of human and bovine cartilage disks were characterized by elastic modulus and hydraulic permeability in radially confined axial compression, and by Young's modulus, Poisson's ratio, and direction-dependent radial strain in unconfined compression. Biochemical composition was assessed in terms of tissue water, solid, and glycosaminoglycan (GAG) contents. Responses to mechanical injury were assessed by observation of macroscopic superficial tissue cracks and histological measurements of cell viability following single injurious ramp loads at 7 or 70%/s strain rate to 3 or 14 MPa peak stress. RESULTS: Confined compression moduli and Young's moduli were greater in elderly human femoral cartilage vs adult bovine humeral cartilage whereas hydraulic permeability was less. Radial deformations of axially compressed explant disks were more anisotropic (direction-dependent) for the human cartilage. In both cartilage sources, tissue cracking and associated cell death during injurious loading was common for 14 MPa peak stress at both strain rates. CONCLUSION: Despite differences in mechanical properties, acute damage induced by injurious loading was similar in both elderly human femoral cartilage and adult bovine humeral cartilage, supporting the clinical relevance of animal-based cartilage injury models. However, inherent structural differences such as cell density may influence subsequent cell-mediated responses to injurious loading and affect the development of OA.
Resumo:
STUDY OBJECTIVE: To evaluate the safety of a combined heat and moisture exchanger filter (HMEF) for the conditioning of inspired gas in long-term mechanical ventilation (MV). DESIGN: Randomized controlled trial. SETTING: Medical ICU in a large teaching hospital. PATIENTS: One hundred fifteen consecutive patients who required > or = 48 h of MV. INTERVENTIONS: Patients were randomized at intubation time (day 1) to receive inspired gas conditioned either by a water-bath humidifier heated at 32 degrees C (HWBH) or by an HMEF (Hygroster; DAR; Mirandola, Italy). MEASUREMENTS AND MAIN RESULTS: The two study groups were comparable in terms of primary pathologic condition at the time of hospital admission, disease severity as measured by the Simplified Acute Physiology Score, and ICU mortality. They did not differ with respect to ventilator days per patient (mean +/- SD: HMEF, 7.6 +/- 6.5; HWBH, 7.8 +/- 5.8), incidence of endotracheal tube obstruction (HMEF, 0/59; HWBH, 1/56), and incidence of hypothermic episodes (HMEF, five; HWBH, two). In 41 patients receiving MV for > or = 5 days, the morphologic integrity of respiratory epithelium was evaluated on day 1 and day 5, using a cytologic examination of tracheal aspirate smears. The state of ciliated epithelium was scored on a scale from 0 (poorest integrity) to 1,200 (maximum integrity), according to a well-described method. In both patient groups, the scores slightly but significantly decreased from day 1 to day 5 (mean +/- SD: HWBH, from 787 +/- 104 to 745 +/- 88; HMEF, from 813 +/- 79 to 739 +/- 62; p < 0.01 for both groups); there were no statistically significant differences between groups. CONCLUSIONS: These data indicate acceptable safety of HMEFs of the type used in the present study for long-term mechanical ventilation.
Resumo:
PURPOSE: This descriptive article illustrates the application of Global Positioning System (GPS) professional receivers in the field of locomotion studies. The technological challenge was to assess the external mechanical work in outdoor walking. METHODS: Five subjects walked five times during 5 min on an athletic track at different imposed stride frequency (from 70-130 steps x min(-1)). A differential GPS system (carrier phase analysis) measured the variation of the position of the trunk at 5 Hz. A portable indirect calorimeter recorded breath-by-breath energy expenditure. RESULTS: For a walking speed of 1.05 +/- 0.11 m x s(-1), the vertical lift of the trunk (43 +/- 14 mm) induced a power of 46.0 +/- 20.4 W. The average speed variation per step (0.15 +/- 0.03 m x s(-1)) produced a kinetic power of 16.9 +/- 7.2 W. As compared with commonly admitted values, the energy exchange (recovery) between the two energy components was low (39.1 +/- 10.0%), which induced an overestimated mechanical power (38.9 +/- 18.3 W or 0.60 W x kg(-1) body mass) and a high net mechanical efficiency (26.9 +/- 5.8%). CONCLUSION: We assumed that the cause of the overestimation was an unwanted oscillation of the GPS antenna. It is concluded that GPS (in phase mode) is now able to record small body movements during human locomotion, and constitutes a promising tool for gait analysis of outdoor unrestrained walking. However, the design of the receiver and the antenna must be adapted to human experiments and a thorough validation study remains to be conducted.
Resumo:
We address the challenges of treating polarization and covalent interactions in docking by developing a hybrid quantum mechanical/molecular mechanical (QM/MM) scoring function based on the semiempirical self-consistent charge density functional tight-binding (SCC-DFTB) method and the CHARMM force field. To benchmark this scoring function within the EADock DSS docking algorithm, we created a publicly available dataset of high-quality X-ray structures of zinc metalloproteins ( http://www.molecular-modelling.ch/resources.php ). For zinc-bound ligands (226 complexes), the QM/MM scoring yielded a substantially improved success rate compared to the classical scoring function (77.0% vs 61.5%), while, for allosteric ligands (55 complexes), the success rate remained constant (49.1%). The QM/MM scoring significantly improved the detection of correct zinc-binding geometries and improved the docking success rate by more than 20% for several important drug targets. The performance of both the classical and the QM/MM scoring functions compare favorably to the performance of AutoDock4, AutoDock4Zn, and AutoDock Vina.
Resumo:
Patients with chronic heart failure who are not eligible for heart transplant and whose life expectancy depends mainly on the heart disease may benefit from mechanical circulatory support. Mechanical circulatory support restores adequate cardiac output and organ perfusion and eventually improves patients' clinical condition, quality of life and life expectancy. This treatment is called destination therapy (DT) and we estimate that in Switzerland more than 120 patients per year could benefit from it. In the last 10 years, design of the devices, implantation techniques and prognoses have changed dramatically. The key to successful therapy with a left ventricular assist device is appropriate patient selection, although we are still working on the definition of reliable inclusion and exclusion criteria and optimal timing for surgical implantation. Devices providing best long-term results are continuous flow, rotary or axial blood pumps implanted using minimally invasive techniques on a beating heart. These new devices (Thoratec HeartMate II and HeartWare HVAD) have only a single moving part, and have improved durability with virtually 10 years freedom from mechanical failure. In selected patients, the overall actuarial survival of DT patients is 75% at 1 year and 62% at 2 years, with a clear improvement in quality of life compared with medical management only. Complications include bleeding and infections; their overall incidence is significantly lower than with previous devices and their management is well defined. DT is evolving into an effective and reasonably cost-effective treatment option for a growing population of patients not eligible for heart transplant, showing encouraging survival rates at 2 years and providing clear improvement in quality of life. The future is bright for people suffering from chronic heart failure.