4 resultados para Material science

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyzed the initial adhesion and biofilm formation of Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) on various bone grafts and bone graft substitutes under standardized in vitro conditions. In parallel, microcalorimetry was evaluated as a real-time microbiological assay in the investigation of biofilm formation and material science research. The materials beta-tricalcium phosphate (beta-TCP), processed human spongiosa (Tutoplast) and poly(methyl methacrylate) (PMMA) were investigated and compared with polyethylene (PE). Bacterial counts (log(10) cfu per sample) were highest on beta-TCP (S. aureus 7.67 +/- 0.17; S. epidermidis 8.14 +/- 0.05) while bacterial density (log(10) cfu per surface) was highest on PMMA (S. aureus 6.12 +/- 0.2, S. epidermidis 7.65 +/- 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (beta-TCP and processed human spongiosa, p < 0.001) compared to the smooth materials (PMMA and PE), with no differences between beta-TCP and processed human spongiosa (p > 0.05) or PMMA and PE (p > 0.05). In contrast, for S. epidermidis biofilms the detection time was different (p < 0.001) between all materials except between processed human spongiosa and PE (p > 0.05). The quantitative analysis by quantitative culture after washing and sonication of the material demonstrated the importance of monitoring factors like specific surface or porosity of the test materials. Isothermal microcalorimetry proved to be a suitable tool for an accurate, non-invasive and real-time microbiological assay, allowing the detection of bacterial biomass without removing the biofilm from the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotopic analyses on bulk carbonates are considered a useful tool for palaeoclimatic reconstruction assuming calcite precipitation occurring at oxygen isotope equilibrium with local water and detrital carbonate input being absent or insignificant. We present results from Lake Neuchatel (western Switzerland) that demonstrate equilibrium precipitation of calcite, except during high productivity periods, and the presence of detrital and resuspended calcite. Mineralogy, geochemistry and stable isotope values of Lake Neuchatel trap sediments and adjacent rivers suspension were studied. Mineralogy of suspended matter in the major inflowing rivers documents an important contribution of detrital carbonates, predominantly calcite with minor amounts of dolomite and ankerite. Using mineralogical data, the quantity of allochthonous calcite can be estimated by comparing the ratio ankerite + dolomite/calcite + ankerite + dolomite in the inflowing rivers and in the traps. Material taken from sediment traps shows an evolution from practically pure endogenic calcite in summer (10-20% detrital material) to higher percentages of detrital material in winter (up to 20-40%). Reflecting these mineralogical variations, delta(13)C and delta(18)O values of calcite from sediment traps are more negative in summer than in winter times. Since no significant variations in isotopic composition of lake water were detected over one year, factors controlling oxygen isotopic composition of calcite in sediment traps are the precipitation temperature, and the percentage of resuspended and detrital calcite. Samples taken close to the river inflow generally have higher delta values than the others, confirming detrital influence. SEM and isotopic studies on different size fractions (<2, 2-6, 6-20, 20-60, >60 mu m) of winter and summer samples allowed the recognition of resuspension and to separate new endogenic calcite from detrital calcite. Fractions >60 and (2 mu m have the highest percentage of detritus, Fractions 2-6 and 6-20 mu m are typical for the new endogenic calcite in summer, as given by calculations assuming isotopic equilibrium with local water. In winter such fractions show similar values than in summer, indicating resuspension. Using the isotopic composition of sediment traps material and of different size fractions, as well as the isotopic composition of lake water, the water temperature measurements and mineralogy, we re-evaluated the bulk carbonate potential for palaeoclimatic reconstruction in the presence of detrital and re-suspended calcite. This re-evaluation leads to the following conclusion: (1) the endogenic signal can be amplified by applying a particle-size separation, once the size of endogenic calcite is known from SEM study; (2) resuspended calcite does not alter the endogenic signal, but it lowers the time resolution; (3) detrital input decreases at increasing distances from the source, and it modifies the isotopic signal only when very abundant; (4) influence of detrital calcite on bulk sediment isotopic composition can be calculated. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a global vision of images in forensic science. The proliferation of perspectives on the use of images throughout criminal investigations and the increasing demand for research on this topic seem to demand a forensic science-based analysis. In this study, the definitions of and concepts related to material traces are revisited and applied to images, and a structured approach is used to persuade the scientific community to extend and improve the use of images as traces in criminal investigations. Current research efforts focus on technical issues and evidence assessment. This article provides a sound foundation for rationalising and explaining the processes involved in the production of clues from trace images. For example, the mechanisms through which these visual traces become clues of presence or action are described. An extensive literature review of forensic image analysis emphasises the existing guidelines and knowledge available for answering investigative questions (who, what, where, when and how). However, complementary developments are still necessary to demystify many aspects of image analysis in forensic science, including how to review and select images or use them to reconstruct an event or assist intelligence efforts. The hypothetico-deductive reasoning pathway used to discover unknown elements of an event or crime can also help scientists understand the underlying processes involved in their decision making. An analysis of a single image in an investigative or probative context is used to demonstrate the highly informative potential of images as traces and/or clues. Research efforts should be directed toward formalising the extraction and combination of clues from images. An appropriate methodology is key to expanding the use of images in forensic science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our contribution aims to explore some intersections between forensic science and criminology through the notion of time. The two disciplines analyse the vestiges of illicit activities in order to reconstruct and understand the past, and occasionally to prevent future harms. While forensic science study the material and digital traces as signs of criminal activities and repetitions, criminology contributes to the acquisition of knowledge through its analysis of crime, its authors and victims, as well as social (re)actions to harmful behaviours. Exploratory, our contribution proposes a conceptual delimitation of the notion of time considering its importance in the study of criminality and harms. Through examples, we propose a "crimino-forensic" analysis of three types of actions of social control - prevention, investigation and intelligence - through their respective temporality (before, near or during and after the criminal activity or harm). The temporal issues of the different methodologies developed to appreciate the efficiency of these actions are also addressed to highlight the connections between forensic science and criminology. This attempt to classify the relations between different times and actions of social control are discussed through the multiple benefits and challenges carried out by the formalisation of fusing those two sciences. Notre contribution vise à explorer quelques intersections entre la science forensique (ou criminalistique) et la criminologie au travers de la notion de temps. En effet, les deux disciplines ont en commun qu'elles analysent les vestiges du phénomène criminel pour tenter de reconstruire et comprendre le passé et parfois prévenir de futurs incidents. Alors que la science forensique étudie les traces matérielles et numériques comme signe d'activités et de répétitions criminelles, la criminologie contribue à l'avancée des connaissances en ce domaine par son analyse des comportements contraires aux normes, de leurs auteurs et de leurs victimes, ainsi que des (ré)actions sociales à ces comportements. A but exploratoire, notre contribution propose une délimitation conceptuelle de la notion de temps en regard de l'importance que revêtent ses différentes manifestations dans l'étude de la criminalité. A l'appui d'exemples, nous proposons une analyse « crimino-forensique » de trois types d'action de contrôle social - la prévention, l'investigation et le renseignement - en fonction de leur temporalité respective (avant, proche voire pendant et après l'activité criminelle). Les enjeux temporels entourant les différentes stratégies méthodologiques développées pour apprécier l'efficacité de ces actions sont aussi abordés pour mettre en évidence des pistes d'intégration entre la science forensique et la criminologie. Cet essai de classification des relations entre les temps et ces trois actions de contrôle social est discuté sous l'angle des bénéfices, multiples, mais aussi des défis, que pose la formalisation des liens entre ces deux disciplines des sciences criminelles.