65 resultados para Matching In Graphs
em Université de Lausanne, Switzerland
Resumo:
Neurally adjusted ventilatory assist (NAVA) is a ventilation assist mode that delivers pressure in proportionality to electrical activity of the diaphragm (Eadi). Compared to pressure support ventilation (PS), it improves patient-ventilator synchrony and should allow a better expression of patient's intrinsic respiratory variability. We hypothesize that NAVA provides better matching in ventilator tidal volume (Vt) to patients inspiratory demand. 22 patients with acute respiratory failure, ventilated with PS were included in the study. A comparative study was carried out between PS and NAVA, with NAVA gain ensuring the same peak airway pressure as PS. Robust coefficients of variation (CVR) for Eadi and Vt were compared for each mode. The integral of Eadi (ʃEadi) was used to represent patient's inspiratory demand. To evaluate tidal volume and patient's demand matching, Range90 = 5-95 % range of the Vt/ʃEadi ratio was calculated, to normalize and compare differences in demand within and between patients and modes. In this study, peak Eadi and ʃEadi are correlated with median correlation of coefficients, R > 0.95. Median ʃEadi, Vt, neural inspiratory time (Ti_ ( Neural )), inspiratory time (Ti) and peak inspiratory pressure (PIP) were similar in PS and NAVA. However, it was found that individual patients have higher or smaller ʃEadi, Vt, Ti_ ( Neural ), Ti and PIP. CVR analysis showed greater Vt variability for NAVA (p < 0.005). Range90 was lower for NAVA than PS for 21 of 22 patients. NAVA provided better matching of Vt to ʃEadi for 21 of 22 patients, and provided greater variability Vt. These results were achieved regardless of differences in ventilatory demand (Eadi) between patients and modes.
Resumo:
We investigate the coevolution between philopatry and altruism in island-model populations when kin recognition occurs through phenotype matching. In saturated environments, a good discrimination ability is a necessary prerequisite for the emergence of sociality. Discrimination decreases not only with the average phenotypic similarity between immigrants and residents (i.e., with environmental homogeneity and past gene flow) but also with the sampling variance of similarity distributions (a negative function of the number of traits sampled). Whether discrimination should rely on genetically or environmentally determined traits depends on the apportionment of phenotypic variance and, in particular, on the relative values of e (the among-group component of environmental variance) and r (the among-group component of genetic variance, which also measures relatedness among group members). If r exceeds e, highly heritable cues do better. Discrimination and altruism, however, remain low unless philopatry is enforced by ecological constraints. If e exceeds r, by contrast, nonheritable traits do better. High e values improve discrimination drastically and thus have the potential to drive sociality, even in the absence of ecological constraints. The emergence of sociality thus can be facilitated by enhancing e, which we argue is the main purpose of cue standardization within groups, as observed in many social insects, birds, and mammals, including humans.
Resumo:
Network analysis naturally relies on graph theory and, more particularly, on the use of node and edge metrics to identify the salient properties in graphs. When building visual maps of networks, these metrics are turned into useful visual cues or are used interactively to filter out parts of a graph while querying it, for instance. Over the years, analysts from different application domains have designed metrics to serve specific needs. Network science is an inherently cross-disciplinary field, which leads to the publication of metrics with similar goals; different names and descriptions of their analytics often mask the similarity between two metrics that originated in different fields. Here, we study a set of graph metrics and compare their relative values and behaviors in an effort to survey their potential contributions to the spatial analysis of networks.
Resumo:
BACKGROUND: This study aimed to investigate the influence of deep sternal wound infection on long-term survival following cardiac surgery. MATERIAL AND METHODS: In our institutional database we retrospectively evaluated medical records of 4732 adult patients who received open-heart surgery from January 1995 through December 2005. The predictive factors for DSWI were determined using logistic regression analysis. Then, each patient with deep sternal wound infection (DSWI) was matched with 2 controls without DSWI, according to the risk factors identified previously. After checking balance resulting from matching, short-term mortality was compared between groups using a paired test, and long-term survival was compared using Kaplan-Meier analysis and a Cox proportional hazard model. RESULTS: Overall, 4732 records were analyzed. The mean age of the investigated population was 69.3±12.8 years. DSWI occurred in 74 (1.56%) patients. Significant independent predictive factors for deep sternal infections were active smoking (OR 2.19, CI95 1.35-3.53, p=0.001), obesity (OR 1.96, CI95 1.20-3.21, p=0.007), and insulin-dependent diabetes mellitus (OR 2.09, CI95 1.05-10.06, p=0.016). Mean follow-up in the matched set was 125 months, IQR 99-162. After matching, in-hospital mortality was higher in the DSWI group (8.1% vs. 2.7% p=0.03), but DSWI was not an independent predictor of long-term survival (adjusted HR 1.5, CI95 0.7-3.2, p=0.33). CONCLUSIONS: The results presented in this report clearly show that post-sternotomy deep wound infection does not influence long-term survival in an adult general cardio-surgical patient population.
Local adaptation and matching habitat choice in female barn owls with respect to melanic coloration.
Resumo:
Local adaptation is a major mechanism underlying the maintenance of phenotypic variation in spatially heterogeneous environments. In the barn owl (Tyto alba), dark and pale reddish-pheomelanic individuals are adapted to conditions prevailing in northern and southern Europe, respectively. Using a long-term dataset from Central Europe, we report results consistent with the hypothesis that the different pheomelanic phenotypes are adapted to specific local conditions in females, but not in males. Compared to whitish females, reddish females bred in sites surrounded by more arable fields and less forests. Colour-dependent habitat choice was apparently beneficial. First, whitish females produced more fledglings when breeding in wooded areas, whereas reddish females when breeding in sites with more arable fields. Second, cross-fostering experiments showed that female nestlings grew wings more rapidly when both their foster and biological mothers were of similar colour. The latter result suggests that mothers should particularly produce daughters in environments that best match their own coloration. Accordingly, whiter females produced fewer daughters in territories with more arable fields. In conclusion, females displaying alternative melanic phenotypes bred in habitats providing them with the highest fitness benefits. Although small in magnitude, matching habitat selection and local adaptation may help maintain variation in pheomelanin coloration in the barn owl.
Resumo:
Overall it seems that age and gender interviewer characteristics are relevant in achieving higher cooperation rates by telephone panel members. This appears to be the case especially for older male interviewers, who perform the best on gaining cooperation across different types of respondents. This holds if important interviewer covariates like experience are controlled for. There is no evidence that special sex age or sex matches yield a higher cooperation. It may be that not only the perceived authority of the institution that sponsors the survey plays a role when it comes to cooperation (Groves et al., 1992) but also of the interviewer who asks for this cooperation. Presumably older men have more authority to convince sample members to participate. A simple recommendation is to use as many older male interviewers as possible for the recruitment phase. It is likely that this strategy would also be successful in other western cultures than Switzerland.
Resumo:
INTRODUCTION. Patient-ventilator asynchrony is a frequent issue in non invasivemechanical ventilation (NIV) and leaks at the patient-mask interface play a major role in itspathogenesis. NIV algorithms alleviate the deleterious impact of leaks and improve patient-ventilator interaction. Neurally adusted ventilatory assist (NAVA), a neurally triggered modethat avoids interferences between leaks and the usual pneumatic trigger, could further improvepatient-ventilator interaction in NIV patients.OBJECTIVES. To evaluate the feasibility ofNAVAin patients receiving a prophylactic postextubationNIV and to compare the respective impact ofPSVandNAVAwith and withoutNIValgorithm on patient-ventilator interaction.METHODS. Prospective study conducted in 16 beds adult critical care unit (ICU) in a tertiaryuniversity hospital. Over a 2 months period, were included 17 adult medical ICU patientsextubated for less than 2 h and in whom a prophylactic post-extubation NIV was indicated.Patients were randomly mechanically ventilated for 10 min with: PSV without NIV algorithm(PSV-NIV-), PSV with NIV algorithm (PSV-NIV+),NAVAwithout NIV algorithm (NAVANIV-)and NAVA with NIV algorithm (NAVA-NIV+). Breathing pattern descriptors, diaphragmelectrical activity, leaks volume, inspiratory trigger delay (Tdinsp), inspiratory time inexcess (Tiexcess) and the five main asynchronies were quantified. Asynchrony index (AI) andasynchrony index influenced by leaks (AIleaks) were computed.RESULTS. Peak inspiratory pressure and diaphragm electrical activity were similar in thefour conditions. With both PSV and NAVA, NIV algorithm significantly reduced the level ofleak (p\0.01). Tdinsp was not affected by NIV algorithm but was shorter in NAVA than inPSV (p\0.01). Tiexcess was shorter in NAVA and PSV-NIV+ than in PSV-NIV- (p\0.05).The prevalence of double triggering was significantly lower in PSV-NIV+ than in NAVANIV+.As compared to PSV,NAVAsignificantly reduced the prevalence of premature cyclingand late cycling while NIV algorithm did not influenced premature cycling. AI was not affectedby NIV algorithm but was significantly lower in NAVA than in PSV (p\0.05). AIleaks wasquasi null with NAVA and significantly lower than in PSV (p\0.05).CONCLUSIONS. NAVA is feasible in patients receiving a post-extubation prophylacticNIV. NAVA and NIV improve patient-ventilator synchrony in different manners. NAVANIV+offers the best patient-ventilator interaction. Clinical studies are required to assess thepotential clinical benefit of NAVA in patients receiving NIV.
Resumo:
Aim Niche conservatism, or the extent to which niches are conserved across space and time, is of special concern for the study of non-native species as it underlies predictions of invasion risk. Based on the occurrence of 28 non-native birds in Europe, we assess to what extent Grinnellian realized niches are conserved during invasion, formulate hypotheses to explain the variation in observed niche changes and test how well species distribution models can predict non-native bird occurrence in Europe. Location Europe. Methods To quantify niche changes, a recent method that applies kernel smoothers to densities of species occurrence in a gridded environmental space was used. This corrects for differences in the availability of environments between study areas and allows discrimination between 'niche expansion' into environments new to the species and 'niche unfilling', whereby the species only partially fills its niche in the invaded range. Predictions of non-native bird distribution in Europe were generated using several distribution modelling techniques. Results Niche overlap between native and non-native bird populations is low, but niche changes are smaller for species having a higher propagule pressure and that were introduced longer ago. Non-native birds in Europe occupy a subset of the environments they inhabit in their native ranges. Niche expansion into novel environments is rare for most species, allowing species distribution models to accurately predict invasion risk. Main conclusions Because of the recent nature of most bird introductions, species occupy only part of the suitable environments available in the invaded range. This signals that apart from purely ecological factors, patterns of niche conservatism may also be contingent on population-specific historical factors. These results also suggest that many claims of niche differences may be due to a partial filling of the native niche in the invaded range and thus do not represent true niche changes.
Resumo:
Abstract: Background: Cancer/testis (CT) genes are expressed only in the germ line and certain tumors and are most frequently located on the X-chromosome (the CT-X genes). Amongst the best studied CT-X genes are those encoding several MAGE protein families. The function of MAGE proteins is not well understood, but several have been shown to potentially influence the tumorigenic phenotype. Methodology/Principal Findings: We undertook a mutational analysis of coding regions of four CT-X MAGE genes, MAGEA1, MAGEA4, MAGEC1, MAGEC2 and the ubiquitously expressed MAGEE1 in human melanoma samples. We first examined cell lines established from tumors and matching blood samples from 27 melanoma patients. We found that melanoma cell lines from 37% of patients contained at least one mutated MAGE gene. The frequency of mutations in the coding regions of individual MAGE genes varied from 3.7% for MAGEA1 and MAGEA4 to 14.8% for MAGEC2. We also examined 111 fresh melanoma samples collected from 86 patients. In this case, samples from 32% of the patients exhibited mutations in one or more MAGE genes with the frequency of mutations in individual MAGE genes ranging from 6% in MAGEA1 to 16% in MAGEC1. Significance: These results demonstrate for the first time that the MAGE gene family is frequently mutated in melanoma.
Resumo:
BACKGROUND: Elderly schizophrenia patients frequently develop cognitive impairment of unclear etiology. Magnetic resonance imaging (MRI) studies revealed brain structural abnormalities, but the pattern of cortical gray matter (GM) volume and its relationship with cognitive and behavioral symptoms are unknown. METHODS: Magnetic resonance scans were taken from elderly schizophrenia patients (n = 20, age 67 +/- 6 SD, Mini-Mental State Examination [MMSE] 23 +/- 4), Alzheimer's disease (AD) patients (n = 20, age 73 +/- 9, MMSE 22 +/- 4), and healthy elders (n = 20, age 73 +/- 8, MMSE 29 +/- 1). Patients were assessed with a comprehensive neuropsychological and behavioral battery. Cortical pattern matching and a region-of-interest analysis, based on Brodmann areas (BAs), were used to map three-dimensional (3-D) profiles of differences in patterns of gray matter volume among groups. RESULTS: Schizophrenia patients had 10% and 11% lower total left and right GM volume than healthy elders (p < .001) and 7% and 5% more than AD patients (p = .06 and ns). Regions that had both significantly less gray matter than control subjects and gray matter volume as low as AD mapped to the cingulate gyrus and orbitofrontal cortex (BA 30, 23, 24, 32, 25, 11). The strongest correlate of gray matter volume in elderly schizophrenia patients, although nonsignificant, was the positive symptom subscale of the Positive and Negative Syndrome Scale, mapping to the right anterior cingulate area (r = .42, p = .06). CONCLUSIONS: The orbitofrontal/cingulate region had low gray matter volume in elderly schizophrenia patients. Neither cognitive impairment nor psychiatric symptoms were significantly associated with structural differences, even if positive symptoms tended to be associated with increased gray matter volume in this area.
Resumo:
Well-established examples of genetic epistasis between a pair of loci typically show characteristic patterns of phenotypic distributions in joint genotype tables. However, inferring epistasis given such data is difficult due to the lack of power in commonly used approaches, which decompose the epistatic patterns into main plus interaction effects followed by testing the interaction term. Testing additive-only or all terms may have more power, but they are sensitive to nonepistatic patterns. Alternatively, the epistatic patterns of interest can be enumerated and the best matching one is found by searching through the possibilities. Although this approach requires multiple testing correction over possible patterns, each pattern can be fitted with a regression model with just one degree of freedom and thus the overall power can still be high, if the number of possible patterns is limited. Here we compare the power of the linear decomposition and pattern search methods, by applying them to simulated data generated under several patterns of joint genotype effects with simple biological interpretations. Interaction-only tests are the least powerful; while pattern search approach is the most powerful if the range of possibilities is restricted, but still includes the true pattern.