7 resultados para Marine toxins -- Analysis
em Université de Lausanne, Switzerland
Resumo:
Fossil bones and teeth of Late Pleistocene terrestrial mammals from Rhine River gravels (RS) and the North Sea (NS), that have been exposed to chemically and isotopically distinct diagenetic fluids (fresh water versus seawater), were investigated to study the effects of early diagenesis on biogenic apatite. Changes in phosphate oxygen isotopic composition (delta O-18(PO4)), nitrogen content (wt.% N) and rare earth element (REE) concentrations were measured along profiles within bones that have not been completely fossilized, and in skeletal tissues (bone, dentine, enamel) with different susceptibilities to diagenetic alteration. Early diagenetic changes of elemental and isotopic compositions of apatite in fossil bone are related to the loss of the stabilizing collagen matrix. The REE concentration is negatively correlated with the nitrogen content, and therefore the amount of collagen provides a sensitive proxy for early diagenetic alteration. REE patterns of RS and NS bones indicate initial fossilization in a fresh water fluid with similar REE compositions. Bones from both settings have nearly collagen-free, REE-, U-, F- and Sr-enriched altered outer rims, while the collagen-bearing bone compacta in the central part often display early diagenetic pyrite void-fillings. However, NS bones exposed to Holocene seawater have outer rim delta O-18(PO4) values that are 1.1 to 2.6 parts per thousand higher compared to the central part of the same bones (delta O-18(PO4) = 18.2 +/- 0.9 parts per thousand, n = 19). Surprisingly, even the collagen-rich bone compacta with low REE contents and apatite crystallinity seems altered, as NS tooth enamel (delta O-18(PO4) =15.0 +/- 0.3 parts per thousand, n=4) has about 3%. lower delta O-18(PO4) values, values that are also similar to those of enamel from RS teeth. Therefore, REE concentration, N content and apatite crystallinity are in this case only poor proxies for the alteration of delta O-18(PO4) values. Seawater exposure of a few years up to 8 kyr can change the delta O-18(PO4) values of the bone apatite by > 3 parts per thousand. Therefore, bones fossilized in marine settings must be treated with caution for palaeoclimatic reconstructions. However, enamel seems to preserve pristine delta O-18(PO4) values on this time scale. Using species-specific calibrations for modern mammals, a mean delta O-18(H2O) value can be reconstructed for Late Pleistocene mammalian drinking water of around -9.2 +/- 0.5 parts per thousand, which is similar to that of Late Pleistocene groundwater from central Europe. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Secular variations of the seawater carbon isotopic composition provide evidence for paleoceanographic and paleoclimatic changes and may serve for chemiostratigraphic correlations. The present study aimed to improve the current knowledge on the Upper Permian and Triassic segment of the Phanerozoic marine carbon isotope curve, whose Triassic part was poorly constrained by previous studies. Profiles of inorganic carbon isotopes are provided for sections from Himalaya (Salt Range, Kashmir, Spiti and Nepal), Oman and North Dobrogea (Romania) on the basis of whole-rock carbonate analysis. The data acquired, together with a literature compilation confirmed that most of the Upper Permian is characterized by high δ13C values (averaging +40/00) but failed to detect a positive excursion as suggested by recent compilations. In the light of these observations, the large drop in δ13C values associated with the end-Permian mass extinction appears to be driven by a sudden transfer of previously stocked 13C depleted carbon, rather than by the overturn of a Late Permian stratified ocean. The Triassic data-set outlines significant secular variations. The best documented is a carbon isotope positive excursion just across the Lower-Middle Triassic boundary, globally developed since it was detected in various paleogeographic settings. It is interpreted to reflect variations in surface ocean chemistry, possibly related to increased primary productivity, at times when the biotic recovery after the end-Permian mass-extinction began to accelerate significantly and when a sharp rise in seawater δ34S values occurred globally. Strontium isotope data obtained from well preserved biogenic phosphates allow a refinement of the Middle Triassic segment of the seawater strontium isotope curve and show a major inflexion point of the seawater strontium isotope curve also near the Lower Triassic - Middle Triassic boundary. These facts suggest that the transition from the Early to the Middle Triassic was a time of revolutionary global change which represented an important step in the evolution of Mesozoic marine environments. A tentative carbon isotope curve for the Upper Permian to Upper Triassic time interval is proposed. Its major features are: ? high but constant δ13C values during the Late Permian ? a sharp drop in δ13C values in the latest Permian ? subsequent recovery of δ13C values ? a short-lived positive excursion across the Early-Middle Triassic boundary ? a gradual rise in δ13C values starting in the Late Ladinian or in the Early Carnian It is foreseen that these fluctuations of the carbon isotope curve may serve as chronostratigraphic markers and further assist in the correlation of Permian and Triassic carbonate deposits.
Resumo:
Petroleum hydrocarbons are common contaminants in marine and freshwater aquatic habitats, often occurring as a result of oil spillage. Rapid and reliable on-site tools for measuring the bioavailable hydrocarbon fractions, i.e., those that are most likely to cause toxic effects or are available for biodegradation, would assist in assessing potential ecological damage and following the progress of cleanup operations. Here we examined the suitability of a set of different rapid bioassays (2-3 h) using bacteria expressing the LuxAB luciferase to measure the presence of short-chain linear alkanes, monoaromatic and polyaromatic compounds, biphenyls, and DNA-damaging agents in seawater after a laboratory-scale oil spill. Five independent spills of 20 mL of NSO-1 crude oil with 2 L of seawater (North Sea or Mediterranean Sea) were carried out in 5 L glass flasks for periods of up to 10 days. Bioassays readily detected ephemeral concentrations of short-chain alkanes and BTEX (i.e., benzene, toluene, ethylbenzene, and xylenes) in the seawater within minutes to hours after the spill, increasing to a maximum of up to 80 muM within 6-24 h, after which they decreased to low or undetectable levels. The strong decrease in short-chain alkanes and BTEX may have been due to their volatilization or biodegradation, which was supported by changes in the microbial community composition. Two- and three-ring PAHs appeared in the seawater phase after 24 h with a concentration up to 1 muM naphthalene equivalents and remained above 0.5 muM for the duration of the experiment. DNA-damage-sensitive bioreporters did not produce any signal with the oil-spilled aqueous-phase samples, whereas bioassays for (hydroxy)biphenyls showed occasional responses. Chemical analysis for alkanes and PAHs in contaminated seawater samples supported the bioassay data, but did not show the typical ephemeral peaks observed with the bioassays. We conclude that bacterium-based bioassays can be a suitable alternative for rapid on-site quantitative measurement of hydrocarbons in seawater.
Resumo:
Summary : Mining activities produce enormous amounts of waste material known as tailings which are composed of fine to medium size particles. These tailings often contain sulfides, which oxidation can lead to acid and metal contamination of water; therefore they need to be remediated. In this work a tailings bioremediation approach was investigated by an interdisciplinary study including geochemistry, mineralogy and microbiology. The aim of the work was to study the effect of the implementation of wetland above oxidizing tailings on the hydrogeology and the biogeochemical element cycles, and to assess the system evolution over time. To reach these goals, biogeochemical processes occurring in a marine shore tailings deposit were investigated. The studied tailings deposit is located at the Bahìa de Ite, Pacific Ocean, southern Peru, where between 1940 and 1996 the tailings were discharged from the two porphyry copper mines Cuajone and Toquepala. After the end of deposition, a remediation approach was initiated in 1997 with a wetland implementation above the oxidizing tailings. Around 90% of the tailings deposits (total 16 km2) were thus remediated, except the central delta area and some areas close to the shoreline. The multi-stable isotope study showed that the tailings were saturated with fresh water in spite of the marine setting, due to the high hydraulic gradient resulting from the wetland implementation. Submarine groundwater discharge (SGD) was the major source of SO4 2-, C1-, Na+, Fe2+, and Mn2+ input into the tailings at the original shelf-seawater interface. The geochemical study (aquatic geochemistry and X-Ray diffraction (XRD) and sequential extractions from the solid fraction) showed that iron and sulfur oxidation were the main processes in the non-remediated tailings, which showed a top a low-pH oxidation zone with strong accumulation of efflorescent salts at the surface due to capillary upward transport of heavy metals (Fe, Cu, Zn, Mn, Cd, Co, and Ni) in the arid climate. The study showed also that the implementation of the wetland resulted in very low concentrations of heavy metals in solution (mainly under the detection limit) due to the near neutral pH and more reducing conditions (100-150 mV). The heavy metals, which were taken from solution, precipitated as hydroxides and sulfides or were bound to organic matter. The bacterial community composition analysis by Terminal Restriction Fragment Length Polymorphism (T-RFLP) and cloning and sequencing of 16S rRNA genes combined with a detailed statistical analysis revealed a high correlation between the bacterial distribution and the geochemical variables. Acidophilic autotrophic oxidizing bacteria were dominating the oxidizing tailings, whereas neutrophilic and heterotrophic reducing bacteria were driving the biogeochemical processes in the remediated tailings below the wetland. At the subsurface of the remediated tailings, an iron cycling was highlighted with oxidation and reduction processes due to micro-aerophilic niches provided by the plant rhizosphere in this overall reducing environment. The in situ bioremediation experiment showed that the main parameter to take into account for the effectiveness was the water table and chemistry which controls the system. The constructed remediation cells were more efficient and rapid in metal removal when saturation conditions were available. This study showed that the bioremediation by wetland implementation could be an effective and rapid treatment for some sulfidic mine tailings deposits. However, the water saturation of the tailings has to be managed on a long-term basis in order to guarantee stability. Résumé : L'activité minière produit d'énormes quantités de déchets géologiques connus sous le nom de « tailings » composées de particules de taille fine à moyenne. Ces déchets contiennent souvent des sulfures dont l'oxydation conduit à la formation d'effluents acides contaminés en métaux, d'où la nécessité d'effectuer une remédiation des sites de stockage concernés. Le but de ce travail est dans un premier temps d'étudier l'effet de la bio-remédiation d'un dépôt de tailings oxydés sur l'hydrogéologie du système et les cycles biogéochimiques des éléments et en second lieu, d'évaluer l'évolution du processus de remédiation dans le temps. Le site étudié dans ce travail est situé dans la Bahía de Ite, au sud du Pérou, au bord de l'Océan Pacifique. Les déchets miniers en question sont déposés dans un environnement marin. De 1940 à 1996, les déchets de deux mines de porphyre cuprifère - Cuajone et Toquepala - ont été acheminés sur le site via la rivière Locumba. En 1997, une première remédiation a été initiée avec la construction d'une zone humide sur les tailings. Depuis, environ 90% de la surface du dépôt (16 km2) a été traité, les parties restantes étant la zone centrale du delta du Locumba et certaines zones proches de la plage. Malgré la proximité de l'océan, les études isotopiques menées dans le cadre de ce travail ont montré que les tailings étaient saturés en eau douce. Cette saturation est due à la pression hydraulique résultant de la mise en place des zones humides. Un écoulement d'eau souterrain sous-marin a été à détecté à l'interface entre les résidus et l'ancien fond marin. En raison de la géologie locale, il constitue une source d'entrée de SO4 2-, Cl-, Na+, FeZ+, et Mn2+ dans le système. L'analyse de la géochimie aquatique, la Diffraction aux Rayons X (XRD) et l'extraction séquentielle ont montré que l'oxydation du fer et .des sulfures est le principal processus se produisant dans les déchets non remédiés. Ceci a entraîné le développement d'une zone d'oxydation à pH bas induisant une forte accumulation des sels efflorescents, conséquence de la migration capillaire des métaux lourds (Fe, Cu, Zn, Mn, Cd, Co et Ni) de la solution vers la surface dans ce climat aride. Cette étude a montré également que la construction de la zone humide a eu comme résultats une précipitation des métaux dans des phases minérales en raison du pH neutre et des conditions réductrices (100-150mV). Les métaux lourds ont précipité sous la forme d'hydroxydes et de sulfures ou sont adsorbés à la matière organique. L'analyse de la composition de la communauté bactérienne à l'aide la technique T-RFLP (Terminal Restriction Fragment Length Polymorphism) et par le clonage/séquençage des gènes de l'ARNr 16S a été combinée à une statistique détaillée. Cette dernière a révélé une forte corrélation entre la distribution de bactéries spécifiques et la géochimie : Les bactéries autotrophes acidophiles dominent dans les déchets oxydés non remédiés, tandis que des bactéries hétérotrophes neutrophiles ont mené les processus microbiens dans les déchets remédiés sous la zone humide. Sous la surface de la zone humide, nos analyses ont également mis en évidence un cycle du fer par des processus d'oxydoréduction rendus possibles par la présence de niches micro-aérées par la rhizosphère dans cet environnement réducteur. L'expérience de bio-remédiation in situ a montré que les paramètres clés qui contrôlent l'efficacité du traitement sont le niveau de la nappe aquifère et la chimie de l'eau. Les cellules de remédiation se sont montrées plus efficaces et plus rapides lorsque le système a pu être saturé en eau. Finalement, cette étude a montré que la bio-remédiation de déchets miniers par la construction de zones humides est un moyen de traitement efficace, rapide et peu coûteux. Cependant, la saturation en eau du système doit être gérée sur le long terme afin de garantir la stabilité de l'ensemble du système.
Resumo:
Flow cytometry (FCM) is emerging as an important tool in environmental microbiology. Although flow cytometry applications have to date largely been restricted to certain specialized fields of microbiology, such as the bacterial cell cycle and marine phytoplankton communities, technical advances in instrumentation and methodology are leading to its increased popularity and extending its range of applications. Here we will focus on a number of recent flow cytometry developments important for addressing questions in environmental microbiology. These include (i) the study of microbial physiology under environmentally relevant conditions, (ii) new methods to identify active microbial populations and to isolate previously uncultured microorganisms, and (iii) the development of high-throughput autofluorescence bioreporter assays
Resumo:
Pseudomonas fluorescens CHA0 and the related strain Pf-5 are well-characterized representatives of rhizosphere bacteria that have the capacity to protect crop plants from fungal root diseases, mainly by releasing a variety of exoproducts that are toxic to plant pathogenic fungi. Here, we report that the two plant-beneficial pseudomonads also exhibit potent insecticidal activity. Anti-insect activity is linked to a novel genomic locus encoding a large protein toxin termed Fit (for P. fluorescensinsecticidal toxin) that is related to the insect toxin Mcf (Makes caterpillars floppy) of the entomopathogen Photorhabdus luminescens, a mutualist of insect-invading nematodes. When injected into the haemocoel, even low doses of P. fluorescens CHA0 or Pf-5 killed larvae of the tobacco hornworm Manduca sexta and the greater wax moth Galleria mellonella. In contrast, mutants of CHA0 or Pf-5 with deletions in the Fit toxin gene were significantly less virulent to the larvae. When expressed from an inducible promoter in a non-toxic Escherichia coli host, the Fit toxin gene was sufficient to render the bacterium toxic to both insect hosts. Our findings establish the Fit gene products of P. fluorescens CHA0 and Pf-5 as potent insect toxins that define previously unappreciated anti-insect properties of these plant-colonizing bacteria
Resumo:
Background: Pulseless electrical activity (PEA) cardiac arrest is defined as a cardiac arrest (CA) presenting with a residual organized electrical activity on the electrocardiogram. In the last decades, the incidence of PEA has regularly increased, compared to other types of CA like ventricular fibrillation or pulseless ventricular tachycardia. PEA is frequently induced by reversible conditions. The "4 (or 5) H" & "4 (or 5) T" are proposed as a mnemonic to asses for Hypoxia, Hypovolemia, Hypo- /Hyperkalaemia, Hypothermia, Thrombosis (cardiac or pulmonary), cardiac Tamponade, Toxins, and Tension pneumothorax. Other pathologies (intracranial haemorrhage, severe sepsis, myocardial contraction dysfunction) have been identified as potential causes for PEA, but their respective probability and frequencies are unclear and they are not yet included into the resuscitation guidelines. The aim of this study was to analyse the aetiologies of PEA out-of-hospital CA, in order to evaluate the relative frequencies of each cause and therefore to improve the management of patients suffering a PEA cardiac arrest. Method: This retrospective study was based on data routinely and prospectively collected for each PEMS intervention. All adult patients treated from January 1st 2002 to December 2012 31st by the PEMS for out-of-hospital cardiac arrest, with PEA as the first recorded rhythm, and admitted to the emergency department (ED) of the Lausanne University Hospital were included. The aetiologies of PEA cardiac arrest were classified into subgroups, based on the classical H&T's classification, supplemented by four other subgroups analysis: trauma, intra-cranial haemorrhage (ICH), non-ischemic cardiomyopathy (NIC) and undetermined cause. Results: 1866 OHCA were treated by the PEMS. PEA was the first recorded rhythm in 240 adult patients (13.8 %). After exclusion of 96 patients, 144 patients with a PEA cardiac arrest admitted to the ED were included in the analysis. The mean age was 63.8 ± 20.0 years, 58.3% were men and the survival rate at 48 hours was 29%. 32 different causes of OHCA PEA were established for 119 patients. For 25 patients (17.4 %), we were unable to attribute a specific cause for the PEA cardiac arrest. Hypoxia (23.6 %), acute coronary syndrome (12.5%) and trauma (12.5 %) were the three most frequent causes. Pulmonary embolism, Hypovolemia, Intoxication and Hyperkaliemia occurs in less than 10% of the cases (7.6 %, 5.6 %, 3.5%, respectively 2.1 %). Non ischemic cardiomyopathy and intra-cranial haemorrhage occur in 8.3 % and 6.9 %, respectively. Conclusions: According to our results, intra-cranial haemorrhage and non-ischemic cardiomyopathy represent noticeable causes of PEA in OHCA, with a prevalence equalling or exceeding the frequency of classical 4 H's and 4 T's aetiologies. These two pathologies are potentially accessible to simple diagnostic procedures (native CT-scan or echocardiography) and should be included into the 4 H's and 4 T's mnemonic.