16 resultados para Marine sediments - British Columbia - Muchalat Inlet
em Université de Lausanne, Switzerland
Resumo:
Risella Carter and Laxtorum Blome, two genera from the diverse Rhaetian fauna of the Sandilands Formation, Queen Charlotte Islands, are used to illustrate phyletic trends in latest Triassic Radiolaria. Several distinct morphotypes constituting a lineage are recognized for each genus. These lineages are homogenous, evolved in situ, and show a continuum of variation through time. The evolution of Risella takes place entirely in the Rhaetian and all species disappear at the end of the Triassic. Earliest species of Laxtorum appear in the upper Norian and evolve rapidly in the Rhaetian. All Rhaetian species go extinct at the end of the Triassic but the genus survives marginally into the Lower Jurassic. Morphological transformations in Risella (a paronaellid) are manifest in the external/cortical shell as the shape changes from triangular to three-rayed. In Laxtorum, distal post abdominal chambers become constricted and eventually develop a terminal tube while, at the same time, an increase in size and sphericity is coupled with a reduction in the number of post abdominal chambers. Evolutionary transitions in the Risella lineage probably represent a reversion of the normal hypothesized trend for paronaellid radiolarians. In the Laxtorum lineage, comparisons with other groups and species displaying similar homeomorphies suggest the evolutionary trends are fundamental and occur repeatedly in faunas of all ages.
Resumo:
A new Early Triassic marine fauna is described from the Central Oman Mountains. The fauna is Griesbachian in age, on the basis of abundant conodonts and ammonoids, and was deposited in an oxygenated seamount setting off the Arabian platform margin. It is the first Griesbachian assemblage from a well-oxygenated marine setting and thus provides a test for the hypothesis that widespread anoxia prevented rapid recovery. The earliest Griesbachian (parvus zone) contains a low-diversity benthic fauna dominated by the bivalves Promyalina and Claraia. A similar level of recovery characterizes the immediate postextinction interval worldwide. However, the middle upper Griesbachian sedimentary rocks (isarcica and catinata zones) contain an incredibly diverse benthic fauna of bivalves, gastropods, articulate brachiopods, a new undescribed crinoid, echinoids, and ostracods. This fauna is more diverse and ecologically complex than the typical middle to late Griesbachian faunas described from oxygen-restricted settings worldwide. The level of postextinction recovery observed in the Oman fauna is not recorded elsewhere until the Spathian. These data support the hypothesis that the apparent delay in recovery after the end-Permian extinction event was due to widespread and prolonged benthic oxygen restriction: in the absence of anoxia, marine recovery is much faster.
Resumo:
Directed evolution of life through millions of years, such as increasing adult body size, is one of the most intriguing patterns displayed by fossil lineages. Processes and causes of such evolutionary trends are still poorly understood. Ammonoids (externally shelled marine cephalopods) are well known to have experienced repetitive morphological evolutionary trends of their adult size, shell geometry and ornamentation. This study analyses the evolutionary trends of the family Acrochordiceratidae Arthaber, 1911 from the Early to Middle Triassic (251228 Ma). Exceptionally large and bed-rock-controlled collections of this ammonoid family were obtained from strata of Anisian age (Middle Triassic) in north-west Nevada and north-east British Columbia. They enable quantitative and statistical analyses of its morphological evolutionary trends. This study demonstrates that the monophyletic clade Acrochordiceratidae underwent the classical evolute to involute evolutionary trend (i.e. increasing coiling of the shell), an increase in its shell adult size (conch diameter) and an increase in the indentation of its shell suture shape. These evolutionary trends are statistically robust and seem more or less gradual. Furthermore, they are nonrandom with the sustained shift in the mean, the minimum and the maximum of studied shell characters. These results can be classically interpreted as being constrained by the persistence and common selection pressure on this mostly anagenetic lineage characterized by relatively moderate evolutionary rates. Increasing involution of ammonites is traditionally interpreted by increasing adaptation mostly in terms of improved hydrodynamics. However, this trend in ammonoid geometry can also be explained as a case of Copes rule (increasing adult body size) instead of functional explanation of coiling, because both shell diameter and shell involution are two possible paths for ammonoids to accommodate size increase.
Resumo:
There are some striking similarities and some differences between the seismic reflection sections recorded across the fold and thrust belts of the southeast Canadian Cordillera, Quebec-Maine Appalachians and Swiss Alps. In the fold and thrust belts of all three mountain ranges, seismic reflection surveys have yielded high-quality images of. (1) nappes (thin thrust sheets) stacked on top of ancient continental margins; (2) ramp anticlines in the hanging walls of faults that have ramp-flat or listric geometries; (3) back thrusts and back folds that developed during the terminal phases of orogeny; and (4) tectonic wedges and regional decollements. A principal result of the Cordilleran and Appalachian deep crustal studies has been the recognition of master decollements along which continental margin strata have been transported long distances, whereas a principal result of the Swiss Alpine deep crustal program has been the identification of the Adriatic indenter, a crustal-scale wedge that caused delamination of the European lithosphere. Significant crustal roots are observed beneath the fold and thrust belts of the Alps, southeast Canadian Cordillera and parts of the southern Appalachians, but such structures beneath the northern Appalachians have probably been removed by post-orogenic collapse and/or crustal attenuation associated with the Mesozoic opening of the Atlantic Ocean.
Resumo:
Trace-element and isotopic compositions of fossilized shark teeth sampled from Miocene marine sediments of the north Alpine Molasse Basin, the Vienna Basin, and the Pannonian Basin generally show evidence of formation in a marine environment under conditions geochemically equivalent to the open ocean. In contrast, two of eight shark teeth from the Swiss Upper Marine Molasse locality of La Moliere have extremely low delta O-18 values (10.3% and 11.3%) and low Sr-87/Sr-86 ratios (0.707840 and 0.707812) compared to other teeth from this locality (21.1%,22.4%o and 0.708421-0.708630). The rare earth element (REE) abundances and patterns from La Moliere not only differ between dentine and enameloid of the same tooth, but also between different teeth, supporting variable conditions of diagenesis at this site. However, the REE patterns of enameloid from the ``exotic'' teeth analyzed for O and Sr isotopic compositions are similar to those of teeth that have O and Sr isotopic compositions typical of a marine setting at this site. Collectively, this suggests that the two ``exotic'' teeth were formed while the sharks frequented a freshwater environment with very low O-18-content and Sr isotopic composition controlled by Mesozoic calcareous rocks. This is consistent with a paleogeography of high-elevation (similar to 2300 m) Miocene Alps adjacent to a marginal sea.
Resumo:
At the latitude of the Thor-Odin dome (British Columbia) the Columbia River Detachment defines the eastern margin of the Shuswap metamorphic core complex and localizes in a 1 km thick muscovite-bearing quartzite mylonite. We present a combined Ar-40/Ar-39, (micro) structural, and oxygen isotope study of the deformation history in the detachment and evaluate the spatial and temporal relationships between microstructure formation and localization of strain. High-precision Ar-40/Ar-39 geochronology from different levels in the mylonite delineates a pattern of increasingly younger (49.0 to 47.9 Ma) deformation ages in deeper levels of the mylonitic footwall. The correlation of Ar-40/Ar-39 ages with decreasing deformation temperatures (similar to 550 degrees-400 degrees C) in the top 200 m of the mylonite indicates that deformation migrated downward from the contact with the hanging wall. Strain localization was diachronous in progressively deeper levels of the footwall and was likely controlled by fluid-assisted strain hardening due to advective heat removal and contemporaneous reaction weakening due to dissolution-reprecipitation of white mica. The observed constant high-stress microstructures across the entire detachment indicate that flow stress was buffered by the interplay of strain rate and temperature, where high strain rates at elevated temperature produced the same microstructure as lower strain rates under decreasing temperature conditions. The combined data suggest that the complex interplay among temporally nonuniform rates of footwall exhumation, heat advection, and embrittlement by meteoric fluids strongly determines the thermomechanical behavior of extensional detachments.
Resumo:
Based on internal structure, a new family of entactinarian radiolarians, the Kungalariidae, is described with three new genera and four species: Kungalaria newcombi, Cachecreekaria californiensis, Transylvanaria devaensis, and T. hattorii. Members of this family have an eccentric internal, nassellarian-type initial spicule with bar MB, rays A, V, L, I, and spine Ax; a medullary shell built above the plane of lateral rays as in the cephalis of many nassellarians; and a spherical to subspherical cortical shell around the medullary shell. This new family is part of a group of Triassic entactinarians structurally intermediate between Entactinaria, or spicule-bearing Spumellaria, and Nassellaria. The new genera and species described occur in the Rhaetian of Queen Charlotte Islands, British Columbia, Aalenian to early-mid Bajocian of central Japan, Cenomanian of California, and Coniacian of Romania.
Resumo:
Differences in seasonal migratory behaviours are thought to be an important component of reproductive isolation in many organisms. Stable isotopes have been used with success in estimating the location and qualities of disjunct breeding and wintering areas. However, few studies have used isotopic data to estimate the movements of hybrid offspring in species that form hybrid zones. Here, we use stable hydrogen to estimate the wintering locations and migratory patterns of two common and widespread migratory birds, Audubon's (Setophaga auduboni) and myrtle (S. coronata) warblers, as well as their hybrids. These two species form a narrow hybrid zone with extensive interbreeding in the Rocky Mountains of British Columbia and Alberta, Canada, which has been studied for over four decades. Isotopes in feathers grown on the wintering grounds or early on migration reveal three important patterns: (1) Audubon's and myrtle warblers from allopatric breeding populations winter in isotopically different environments, consistent with band recovery data and suggesting that there is a narrow migratory transition between the two species, (2) most hybrids appear to overwinter in the south-eastern USA, similar to where myrtle warblers are known to winter, and (3) some hybrid individuals, particularly those along the western edge of the hybrid zone, show Audubon's-like isotopic patterns. These data suggest there is a migratory divide between these two species, but that it is not directly coincident with the centre of the hybrid zone in the breeding range. We interpret these findings and discuss them within the context of previous research on hybrid zones, speciation and migratory divides.
Resumo:
Late Triassic submarine alkali basalts and hawaiites were collected from two superimposed tectonic slices belonging to the Kara Dere - Sayrun unit of the Middle Antalya nappes, southwestern Turkey. New determinations on conodont faunas allow to date this sequence to the Lower Carnian (Julian). The volcanic rocks show rather homogeneous compositions, with high TiO2 and relatively low MgO and Ni contents which suggest olivine fractionation. Their primitive mantle-normalised multi-elements plots show Nb and Ta enrichments relative to La, Pb negative anomalies and heavy rare earth element and Y depletions typical of intraplate ocean island basalts. These characteristics are consistent with the major and trace element compositions of their primary clinopyroxene phenocrysts, which do not show any feature ascribable to crustal contamination. The studied lavas display a restricted range of epsilon Nd (+4.6 to +5.2) which falls within the range of ocean island basalts. Their initial (Nd-143/Nd-144)i ratios are too low to be explained by a simple mixing line between depleted MORB mantle (DMM) and HIMU components. Their Pb and Nd isotopic compositions plot along a mixing line between HIMU component and an enriched mantle, the composition of which could be the result of the addition of about 5 to 8% of an EM2 component (recycled marine sediments) to DMM. The lack of evidence for any continental crustal component. in their genesis could be consistent with their emplacement in an intra-oceanic setting.
Resumo:
A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world's largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (similar to 80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1-CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 mega-flow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO(2) and SO(2) gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment. Deccan volcanism phase-3 began in the early Danian near the C29R/C29n boundary correlative with the planktic foraminiferal zone P1a/P1b boundary and accounts for similar to 14% of the total volume of Deccan eruptions, including four of Earth's longest and largest mega-flows. No major faunal changes are observed in the intertrappeans of zone P1b, which suggests that environmental conditions remained tolerable, volcanic eruptions were less intense and/or separated by longer time intervals thus preventing runaway effects. Alternatively, early Danian assemblages evolved in adaptation to high-stress conditions in the aftermath of the mass extinction and therefore survived phase-3 volcanism. Full marine biotic recovery did not occur until after Deccan phase-3. These data suggest that the catastrophic effects of phase-2 Deccan volcanism upon the Cretaceous planktic foraminifera were a function of both the rapid and massive volcanic eruptions and the highly specialized faunal assemblages prone to extinction in a changing environment. Data from the K-G Basin indicates that Deccan phase-2 alone could have caused the KTB mass extinction and that impacts may have had secondary effects.
Resumo:
In the wake of the 1989 Exxon Valdez oil spill, spatially and temporally spill-correlated biological effects consistent with polycyclic aromatic hydrocarbon (PAH) exposure were observed. Some works have proposed that confounding sources from local source rocks, prominently coals, are the provenance of the PAHs. Representative coal deposits along the southeast Alaskan coast (Kulthieth Formation) were sampled and fully characterized chemically and geologically. The coals have variable but high total organic carbon content technically classifying as coals and coaly shale, and highly varying PAH contents. Even for coals with high PAH content (approximately 4000 ppm total PAHs), a PAH-sensitive bacterial biosensor demonstrates nondetectable bioavailability as quantified, based on naphthalene as a test calibrant. These results are consistent with studies indicating that materials such as coals strongly diminish the bioavailability of hydrophobic organic compounds and support previous work suggesting that hydrocarbons associated with the regional background in northern Gulf of Alaska marine sediments are not appreciably bioavailable.
Resumo:
The low 137Cs activity observed in marine sediments of tropical regions often precludes its use as chronostratigraphic marker. Here we present a study on the use of Pu and Am radioisotopes as alternative markers to constrain the 210Pb ages in a sediment core of the Havana Bay (Cuba). Mean activity ratios of 238Pu/239,240Pu, 241Am/239,240Pu and 241Pu/239,240Pu indicated that the nuclear weapon tests fallout is the main source of the anthropogenic radionuclides. While the inventory of 137Cs in the sediments is lower than the expected fallout inventory, 239,240Pu accumulates in the sediments with inventories higher than the expected fallout inventory. The high fluxes of 239,240Pu are nevertheless corroborated here through use of 210Pb, and confirm that focusing of solid particles is of great importance in the investigated site. 239,240Pu showed to be a useful time tracer in marine sites where the 137Cs signal is very low.