70 resultados para Marine Fungi
em Université de Lausanne, Switzerland
Resumo:
The oxalatecarbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO2. In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are ancient asexually reproducing organisms that form symbioses with the majority of plant species, improving plant nutrition and promoting plant diversity. Little is known about the evolution or organization of the genomes of any eukaryotic symbiont or ancient asexual organism. Direct evidence shows that one AMF species is heterokaryotic; that is, containing populations of genetically different nuclei. It has been suggested, however, that the genetic variation passed from generation to generation in AMF is simply due to multiple chromosome sets (that is, high ploidy). Here we show that previously documented genetic variation in Pol-like sequences, which are passed from generation to generation, cannot be due to either high ploidy or repeated gene duplications. Our results provide the clearest evidence so far for substantial genetic differences among nuclei in AMF. We also show that even AMF with a very large nuclear DNA content are haploid. An underlying principle of evolutionary theory is that an individual passes on one or half of its genome to each of its progeny. The coexistence of a population of many genomes in AMF and their transfer to subsequent generations, therefore, has far-reaching consequences for understanding genome evolution.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are symbiotic soil fungi that are intimately associated with the roots of the majority of land plants. They colonise the interior of the roots and the hyphae extend into the soil. It is well known that bacterial colonisation of the rhizosphere can be crucial for many pathogenic as well as symbiotic plant-microbe interactions. However, although bacteria colonising the extraradical AMF hyphae (the hyphosphere) might be equally important for AMF symbiosis, little is known regarding which bacterial species would colonise AMF hyphae. In this study, we investigated which bacterial communities might be associated with AMF hyphae. As bacterial-hyphal attachment is extremely difficult to study in situ, we designed a system to grow AMF hyphae of Glomus intraradices and Glomus proliferum and studied which bacteria separated from an agricultural soil specifically attach to the hyphae. Characterisation of attached and non-attached bacterial communities was performed using terminal restriction fragment length polymorphism and clone library sequencing of 16S ribosomal RNA (rRNA) gene fragments. For all experiments, the composition of hyphal attached bacterial communities was different from the non-attached communities, and was also different from bacterial communities that had attached to glass wool (a non-living substratum). Analysis of amplified 16S rRNA genes indicated that in particular bacteria from the family of Oxalobacteraceae were highly abundant on AMF hyphae, suggesting that they may have developed specific interactions with the fungi.
Resumo:
Twenty-six species of white-rotting Agaricomycotina fungi (Basidiomycota) were screened for their ability to produce calcium-oxalate (CaOx) crystals in vitro. Most were able to produce CaOx crystals in malt agar medium in the absence of additional calcium. In the same medium enriched with Ca2+, all the species produced CaOx crystals (weddellite or whewellite). Hyphae of four species (Ganoderma lucidum, Polyporus ciliatus, Pycnoporus cinnabarinus, and Trametes versicolor) were found coated with crystals (weddellite/whewellite). The production of CaOx crystals during the growth phase was confirmed by an investigation of the production kinetics for six of the species considered in the initial screening (Pleurotus citrinopileatus, Pleurotus eryngii, Pleurotus ostreatus, P. cinnabarinus, Trametes suaveolens, and T. versicolor). However, the crystals produced during the growth phase disappeared from the medium over time in four of the six species (P. citrinopileatus, P. eryngii, P. cinnabarinus, and T. suaveolens). For P. cinnabarinus, the disappearance of the crystals was correlated with a decrease in the total oxalate concentration measured in the medium from 0.65 μg mm−2 (at the maximum accumulation rate) to 0.30 μg mm−2. The decrease in the CaOx concentration was correlated with a change in mycelia morphology. The oxalate dissolution capability of all the species was also tested in a medium containing calcium oxalate as the sole source of carbon (modified Schlegel medium). Three species (Agaricus blazei, Pleurotus tuberregium, and P. ciliatus) presented a dissolution halo around the growth zone. This study shows that CaOx crystal production is a widespread phenomenon in white-rot fungi, and that an excess of Ca2+ can enhance CaOx crystal production. In addition, it shows that some white-rot fungal species are capable of dissolving CaOx crystals after growth has ceased. These results highlight a diversity of responses around the production or dissolution of calcium oxalate in white-rot fungi and reveal an unexpected potential importance of fungi on the oxalate cycle in the environment.
Resumo:
Self-incompatibility (SI), a reproductive system broadly present in plants, chordates, fungi, and protists, might be controlled by one or several multiallelic loci. How a transition in the number of SI loci can occur and the consequences of such events for the population's genetics and dynamics have not been studied theoretically. Here, we provide analytical descriptions of two transition mechanisms: linkage of the two SI loci (scenario 1) and the loss of function of one incompatibility gene within a mating type of a population with two SI loci (scenario 2). We show that invasion of populations by the new mating type form depends on whether the fitness of the new type is lowered, and on the allelic diversity of the SI loci and the recombination between the two SI loci in the starting population. Moreover, under scenario 1, it also depends on the frequency of the SI alleles that became linked. We demonstrate that, following invasion, complete transitions in the reproductive system occurs under scenario 2 and is predicted only for small populations under scenario 1. Interestingly, such events are associated with a drastic reduction in mating type number.
Resumo:
Abstract :The majority of land plants form the symbiosis with arbuscular mycorrhizal fungi (AMF). The AM symbiosis has existed for hundreds of millions of years but little or no specificity seems to have co- evolved between the partners and only about 200 morphospecies of AMF are known. The fungi supply the plants most notably with phosphate in exchange for carbohydrates. The fungi improve plant growth, protect them against pathogens and herbivores and the symbiosis plays a key role in ecosystem productivity and plant diversity. The fungi are coenocytic, grow clonally and no sexual stage in their life cycle is known. For these reasons, they are presumed ancient asexuals. Evidence suggests that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. Consequently, the nucleotype content of new clonal offspring could potentially be altered by segregation of nuclei at spore formation and by genetic exchange between different AMF. Given the importance of AMF, it is surprising that remarkably little is known about the genetics and genomics of the fungi.The main goal of this thesis was to investigate the combined effects of plant species differences and of genetic exchange and segregation in AMF on the symbiosis. This work showed that single spore progeny can receive a different assortment of nucleotypes compared to their parent and compared to other single spore progeny. This is the first direct evidence that segregation occurs in AMF. We then showed that both genetic exchange and segregation can lead to new progeny that differentially alter plant growth compared to their parents. We also found that genetic exchange and segregation can lead to different development of the fungus during the establishment of the symbiosis. Finally, we found that a shift of host species can differentially alter the phenotypes and genotypes of AMF progeny obtained by genetic exchange and segregation compared to their parents.Overall, this study confirms the multigenomic state of the AMF Glomus intraradices because our findings are possible only if the fungus contains genetically different nuclei. We demonstrated the importance of the processes of genetic exchange and segregation to produce, in a very short time span, new progeny with novel symbiotic effects. Moreover, our results suggest that different host species could affect the fate of different nucleotypes following genetic exchange and segregation in AMF, and can potentially contribute to the maintenance of genetic diversity within AMF individuals. This work brings new insights into understanding how plants and fungi have coevolved and how the genetic diversity in AMF can be maintained. We recommend that the intra-ir1dividual AMF diversity and these processes should be considered in future research on this symbiosis.Résumé :La majorité des plantes terrestres forment des symbioses avec les champignons endomycorhiziens arbusculaires (CEA). Cette symbiose existe depuis plusieurs centaines de millions d'années mais peu ou pas de spécificité semble avoir co-évoluée entre les partenaires et seulement 200 morpho-espèces de CEA sont connues. Le champignon fournit surtout aux plantes du phosphate en échange de carbohydrates. Le champignon augmente la croissance des plantes, les protège contre des pathogènes et herbivores et la symbiose joue un rôle clé dans la productivité des écosystèmes et de la diversité des plantes. Les CEA sont coenocytiques, se reproduisent clonalement et aucune étape sexuée n'est connue dans leur cycle de vie. Pour ces raisons, ils sont présumés comme anciens asexués. Des preuves suggèrent que les CEA ont des populations de nucleotypes différents coexistant dans un cytoplasme commun. Par conséquent, le contenu en nucleotype des nouveaux descendants clonaux pourrait être altéré par la ségrégation des noyaux lors de la fonnation des spores et par l'échange génétique entre différents CEA. Etant donné l'importance des CEA, il est surprenant que si peu soit connu sur la génétique et la génomique du champignon.Le principal but de cette thèse a été d'étudier les effets combinés de différentes espèces de plantes et des mécanismes d'échange génétique et de ségrégation chez les CEA sur la symbiose. Ce travail a montré que chaque nouvelle spore produite pouvait recevoir un assortiment différent de noyaux comparé au parent ou comparé à d'autres nouvelles spores. Ceci est la première preuve directe que la ségrégation peut se produire chez les CEA. Nous avons ensuite montré qu'à la fois l'échange génétique et la ségrégation pouvaient mener à de nouveaux descendants qui altèrent différemment la croissance des plantes, comparé à leurs parents. Nous avons également trouvé que l'échange génétique et la ségrégation pouvaient entraîner des développements différents du champignon pendant l'établissement de la symbiose. Pour finir, nous avons trouvé qu'un changement d'espèce de l'hôte pouvait altérer différemment les phénotypes et génotypes des descendants issus d'échange génétique et de ségrégation, comparé à leurs parents.Globalement, cette étude confirme l'état multigénomique du CEA Glumus intraradices car nous résultats sont possibles seulement si le champignon possède des noyaux génétiquement différents. Nous avons démontrés l'importance des mécanismes d'échange génétique et de ségrégation pour produire en très peu de temps de nouveaux descendants ayant des effets symbiotiques nouveaux. De plus, nos résultats suggèrent que différentes espèces de plantes peuvent agir sur le devenir des nucleotypes après l'échange génétique et la ségrégation chez les CEA, et pourraient contribuer à la maintenance de la diversité génétique au sein d'un même CEA. Ce travail apporte des éléments nouveaux pour comprendre comment les plantes et les champignons ont coévolué et comment la diversité génétique chez les CEA peut être maintenue. Nous recommandons de considérer la diversité génétique intra-individuelle des CEA et ces mécanismes lors de futures recherches sur cette symbiose.
Resumo:
Several Permian-Triassic boundary sections occur in various structural units within Hungary. These sections represent different facies zones of the western Palaeotethys margin. The Gardony core in the NE part of the Transdanubian Range typically represents the inner ramp, while the Balvany section in the Bukk Mountains of northern Hungary represents an outer ramp setting. The two sections have different patterns for their delta(13)C values. The Balvany section shows a continuous change towards more negative delta(13)C values starting at the first biotic decline, followed by a sharp, quasi-symmetric negative peak at the second decline. The appearance of the delta(13)C peak has no relationship to the lithology and occurs within a shale with low overall carbonate content, indicating that the peak is not related to diagenesis or other secondary influences. Instead, the shift and the peak reflect primary processes related to changes in environmental conditions. The continuous shift in delta(13)C values is most probably related to a decrease in bioproductivity, whereas the sharp peak can be attributed to an addition of C strongly depleted in (13)C to the ocean-atmosphere system. The most plausible model is a massive release of methane-hydrate. The quasi-symmetric pattern suggests a rapid warming-cooling cycle or physical unroofing of sediments through slope-failure and releasing methane-hydrate. The Gidony-1 core shows a continuous negative delta(13)C shift starting below the P-T boundary. However, the detailed analyses revealed a sharp delta(13)C peak in the boundary interval, just below the major biotic decline, although its magnitude doesn't reach that observed in the Balvany section. Based on careful textural examination and high-resolution stable isotope microanalyses we suggest that the suppression of the delta(13)C peak that is common in the oolitic boundary sections is due to combined effects of condensed sedimentation, sediment reworking and erosion, as well as perhaps diagenesis. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Different species of arbuscular mycorrhizal fungi (AMF) alter plant growth and affect plant coexistence and diversity. Effects of within-AMF species or within-population variation on plant growth have received less attention. High genetic variation exists within AMF populations. However, it is unknown whether genetic variation contributes to differences in plant growth. In our study, a population of AMF was cultivated under identical conditions for several generations prior to the experiments thus avoiding environmental maternal effects. We show that genetically different Glomus intraradices isolates from one AMF population significantly alter plant growth in an axenic system and in greenhouse experiments. Isolates increased or reduced plant growth meaning that plants potentially receive benefits or are subject to costs by forming associations with different individuals in the AMF population. This shows that genetic variability in AMF populations could affect host-plant fitness and should be considered in future research to understand these important soil organisms.
Resumo:
Secular variations of the seawater carbon isotopic composition provide evidence for paleoceanographic and paleoclimatic changes and may serve for chemiostratigraphic correlations. The present study aimed to improve the current knowledge on the Upper Permian and Triassic segment of the Phanerozoic marine carbon isotope curve, whose Triassic part was poorly constrained by previous studies. Profiles of inorganic carbon isotopes are provided for sections from Himalaya (Salt Range, Kashmir, Spiti and Nepal), Oman and North Dobrogea (Romania) on the basis of whole-rock carbonate analysis. The data acquired, together with a literature compilation confirmed that most of the Upper Permian is characterized by high δ13C values (averaging +40/00) but failed to detect a positive excursion as suggested by recent compilations. In the light of these observations, the large drop in δ13C values associated with the end-Permian mass extinction appears to be driven by a sudden transfer of previously stocked 13C depleted carbon, rather than by the overturn of a Late Permian stratified ocean. The Triassic data-set outlines significant secular variations. The best documented is a carbon isotope positive excursion just across the Lower-Middle Triassic boundary, globally developed since it was detected in various paleogeographic settings. It is interpreted to reflect variations in surface ocean chemistry, possibly related to increased primary productivity, at times when the biotic recovery after the end-Permian mass-extinction began to accelerate significantly and when a sharp rise in seawater δ34S values occurred globally. Strontium isotope data obtained from well preserved biogenic phosphates allow a refinement of the Middle Triassic segment of the seawater strontium isotope curve and show a major inflexion point of the seawater strontium isotope curve also near the Lower Triassic - Middle Triassic boundary. These facts suggest that the transition from the Early to the Middle Triassic was a time of revolutionary global change which represented an important step in the evolution of Mesozoic marine environments. A tentative carbon isotope curve for the Upper Permian to Upper Triassic time interval is proposed. Its major features are: ? high but constant δ13C values during the Late Permian ? a sharp drop in δ13C values in the latest Permian ? subsequent recovery of δ13C values ? a short-lived positive excursion across the Early-Middle Triassic boundary ? a gradual rise in δ13C values starting in the Late Ladinian or in the Early Carnian It is foreseen that these fluctuations of the carbon isotope curve may serve as chronostratigraphic markers and further assist in the correlation of Permian and Triassic carbonate deposits.
Resumo:
It is often thought that the coexistence of plants and plant diversity is determined by resource heterogeneity of the abiotic environment. However, the presence and heterogeneity of biotic plant resources, such as arbuscular mycorrhizal fungi (AMF), could also affect plant species coexistence. In this study, Brachypodium pinnatum and Prunella vulgaris were grown together in pots and biotic resource heterogeneity was simulated by inoculating these pots with one of three different AMF taxa, with a mixture of these three taxa, or pots remained uninoculated. The AMF acted as biotic plant resources since the biomass of plants in pots inoculated with AMF was on average 11.8 times higher than uninoculated pots. The way in which the two plant species coexisted, and the distribution of phosphorus and nitrogen between the plant species, varied strongly depending on which AMF were present. The results showed that the composition of AMF communities determines how plant species coexist and to which plant species nutrients are allocated. Biotic plant resources such as AMF should therefore be considered as one of the factors that determine how plant species coexist and how soil resources are distributed among co-occurring plant species.
Resumo:
The genes encoding alpha- and beta-tubulins have been widely sampled in most major fungal phyla and they are useful tools for fungal phylogeny. Here, we report the first isolation of alpha-tubulin sequences from arbuscular mycorrhizal fungi (AMF). In parallel, AMF beta-tubulins were sampled and analysed to identify the presence of paralogs of this gene. The AMF alpha-tubulin amino acid phylogeny was congruent with the results previously reported for AMF beta-tubulins and showed that AMF tubulins group together at a basal position in the fungal clade and showed high sequence similarities with members of the Chytridiomycota. This is in contrast with phylogenies for other regions of the AMF genome. The amount and nature of substitutions are consistent with an ancient divergence of both orthologs and paralogs of AMF tubulins. At the amino acid level, however, AMF tubulins have hardly evolved from those of the chytrids. This is remarkable given that these two groups are ancient and the monophyletic Glomeromycota probably diverged from basal fungal ancestors at least 500 million years ago. The specific primers we designed for the AMF tubulins, together with the high molecular variation we found among the AMF species we analysed, make AMF tubulin sequences potentially useful for AMF identification purposes.
Resumo:
Eighty-four species of benthic and one species of planktonic Foraminifera,classified under 40 genera and 34 families reported for Costa Rica are listed in thispaper. These lists are based on literature data and ongoing studies. All (except forfour species from the Caribbean) are reports from the Pacific Ocean, and most arefrom offshore or have no specific indication of where in Costa Rica the Foraminiferawere collected. Of the other Central American countries there is little informationexcept from Panama. More research is needed on Foraminifera, since they may bea predominant group in some areas and ecosystems, for example the meiofauna ofCaño Island, and much more research is need on planktonic Foraminifera.