49 resultados para Map tasks
em Université de Lausanne, Switzerland
Resumo:
The population of industrialized societies has increased tremendously over the last century, raising the question on how an enhanced age affects cognition. The relevance of two models of healthy aging are contrasted in the present study that both target the functioning of the two cerebral hemispheres. The right hemi-aging model (RHAM) assumes that functions of the right hemisphere decline before those of the left hemisphere. The Hemispheric Asymmetry Reduction in Older Adults (HAROLD) Model suggests that the contralateral hemisphere supports the normally superior hemisphere in a given task resulting in a reduced hemispheric asymmetry overall. In a mixed design, 20 younger and 20 older adults performed both a task assessing a left (lateralized lexical decisions) and a right (sex decisions on chimeric faces) hemisphere advantage. Results indicated that lateralized performance in both tasks was attenuated in older as compared to younger adults, in particular in men. These observations support the HAROLD model. Future studies should investigate whether this reduced functional hemispheric asymmetry in older age results from compensatory processes or from a process of de-differentiation
Resumo:
A growing number of studies have been addressing the relationship between theory of mind (TOM) and executive functions (EF) in patients with acquired neurological pathology. In order to provide a global overview on the main findings, we conducted a systematic review on group studies where we aimed to (1) evaluate the patterns of impaired and preserved abilities of both TOM and EF in groups of patients with acquired neurological pathology and (2) investigate the existence of particular relations between different EF domains and TOM tasks. The search was conducted in Pubmed/Medline. A total of 24 articles met the inclusion criteria. We considered for analysis classical clinically accepted TOM tasks (first- and second-order false belief stories, the Faux Pas test, Happe's stories, the Mind in the Eyes task, and Cartoon's tasks) and EF domains (updating, shifting, inhibition, and access). The review suggests that (1) EF and TOM appear tightly associated. However, the few dissociations observed suggest they cannot be reduced to a single function; (2) no executive subprocess could be specifically associated with TOM performances; (3) the first-order false belief task and the Happe's story task seem to be less sensitive to neurological pathologies and less associated to EF. Even though the analysis of the reviewed studies demonstrates a close relationship between TOM and EF in patients with acquired neurological pathology, the nature of this relationship must be further investigated. Studies investigating ecological consequences of TOM and EF deficits, and intervention researches may bring further contributions to this question.
Resumo:
In this study, we compared a selective stop task (transition from a bimanual in-phase to a unimanual index fingers' tapping), with a non-selective stop task (stopping a bimanual in-phase tapping at all), and with a switching task (transition from in-phase to anti-phase bimanual tapping). The aim was twofold: 1) to identify the electro-cortical correlates of selective and non-selective inhibition processes and 2) to investigate which type of inhibition - selective or not - is required when switching between two bimanual motor patterns. The results revealed that all tasks led to enhanced activation (alpha power) of the left sensorimotor and posterior regions which seems to reflect an overall effort to stop the preferred bimanual in-phase tendency. Each task implied specific functional connectivity reorganizations (beta coherence) between cerebral motor areas, probably reflecting engagement in a new unimanual or bimanual movement.
Resumo:
The retinal pigment epithelium (RPE) is constantly exposed to external injuries which lead to degeneration, dysfunction or loss of RPE cells. The balance between RPE cells death and proliferation may be responsible for several diseases of the underlying retina, including age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Signaling pathways able to control cells proliferation or death usually involve the MAPK (mitogen-activated protein kinases) pathways, which modulate the activity of transcription factors by phosphorylation. UV exposure induces DNA breakdown and causes cellular damage through the production of reactive oxygen species (ROS) leading to programmed cell death. In this study, human retinal pigment epithelial cells ARPE19 were exposed to 100 J/m(2) of UV-C and MAPK pathways were studied. We first showed the expression of the three major MAPK pathways. Then we showed that activator protein-1 (AP-1) was activated through phosphorylation of cJun and cFos, induced by JNK and p38, respectively. Specific inhibitors of both kinases decreased their respective activities and phosphorylation of their nuclear targets (cJun and cFos) and reduced UV-induced cell death. The use of specific kinases inhibitors may provide excellent tools to prevent RPE apoptosis specifically in RPE diseases involving ROS and other stress-related compounds such as in AMD.
Resumo:
High-field (>or=3 T) cardiac MRI is challenged by inhomogeneities of both the static magnetic field (B(0)) and the transmit radiofrequency field (B(1)+). The inhomogeneous B fields not only demand improved shimming methods but also impede the correct determination of the zero-order terms, i.e., the local resonance frequency f(0) and the radiofrequency power to generate the intended local B(1)+ field. In this work, dual echo time B(0)-map and dual flip angle B(1)+-map acquisition methods are combined to acquire multislice B(0)- and B(1)+-maps simultaneously covering the entire heart in a single breath hold of 18 heartbeats. A previously proposed excitation pulse shape dependent slice profile correction is tested and applied to reduce systematic errors of the multislice B(1)+-map. Localized higher-order shim correction values including the zero-order terms for frequency f(0) and radiofrequency power can be determined based on the acquired B(0)- and B(1)+-maps. This method has been tested in 7 healthy adult human subjects at 3 T and improved the B(0) field homogeneity (standard deviation) from 60 Hz to 35 Hz and the average B(1)+ field from 77% to 100% of the desired B(1)+ field when compared to more commonly used preparation methods.
Resumo:
In the parallel map theory, the hippocampus encodes space with 2 mapping systems. The bearing map is constructed primarily in the dentate gyrus from directional cues such as stimulus gradients. The sketch map is constructed within the hippocampus proper from positional cues. The integrated map emerges when data from the bearing and sketch maps are combined. Because the component maps work in parallel, the impairment of one can reveal residual learning by the other. Such parallel function may explain paradoxes of spatial learning, such as learning after partial hippocampal lesions, taxonomic and sex differences in spatial learning, and the function of hippocampal neurogenesis. By integrating evidence from physiology to phylogeny, the parallel map theory offers a unified explanation for hippocampal function.
Resumo:
Fas ligand (FasL) exerts potent proapoptotic and proinflammatory actions on epidermal keratinocytes and has been implicated in the pathogenesis of eczema, toxic epidermal necrolysis, and drug-induced skin eruptions. We used reconstructed human epidermis to investigate the mechanisms of FasL-induced inflammatory responses and their relationships with FasL-triggered caspase activity. Caspase activity was a potent antagonist of the pro-inflammatory gene expression triggered by FasL prior to the onset of cell death. Furthermore, we found that FasL-stimulated autocrine production of epidermal growth factor receptor (EGFR) ligands, and the subsequent activation of EGFR and ERK1 and ERK2 mitogen-activated protein kinases, were obligatory extracellular steps for the FasL-induced expression of a subset of inflammatory mediators, including CXCL8/interleukin (IL)-8, ICAM-1, IL-1alpha, IL-1beta, CCL20/MIP-3alpha, and thymic stromal lymphopoietin. These results expand the known physiological role of EGFR and its ligands from promoting keratinocyte mitogenesis and survival to mediating FasL-induced epidermal inflammation.