77 resultados para Map representation
em Université de Lausanne, Switzerland
Resumo:
The proportion of population living in or around cites is more important than ever. Urban sprawl and car dependence have taken over the pedestrian-friendly compact city. Environmental problems like air pollution, land waste or noise, and health problems are the result of this still continuing process. The urban planners have to find solutions to these complex problems, and at the same time insure the economic performance of the city and its surroundings. At the same time, an increasing quantity of socio-economic and environmental data is acquired. In order to get a better understanding of the processes and phenomena taking place in the complex urban environment, these data should be analysed. Numerous methods for modelling and simulating such a system exist and are still under development and can be exploited by the urban geographers for improving our understanding of the urban metabolism. Modern and innovative visualisation techniques help in communicating the results of such models and simulations. This thesis covers several methods for analysis, modelling, simulation and visualisation of problems related to urban geography. The analysis of high dimensional socio-economic data using artificial neural network techniques, especially self-organising maps, is showed using two examples at different scales. The problem of spatiotemporal modelling and data representation is treated and some possible solutions are shown. The simulation of urban dynamics and more specifically the traffic due to commuting to work is illustrated using multi-agent micro-simulation techniques. A section on visualisation methods presents cartograms for transforming the geographic space into a feature space, and the distance circle map, a centre-based map representation particularly useful for urban agglomerations. Some issues on the importance of scale in urban analysis and clustering of urban phenomena are exposed. A new approach on how to define urban areas at different scales is developed, and the link with percolation theory established. Fractal statistics, especially the lacunarity measure, and scale laws are used for characterising urban clusters. In a last section, the population evolution is modelled using a model close to the well-established gravity model. The work covers quite a wide range of methods useful in urban geography. Methods should still be developed further and at the same time find their way into the daily work and decision process of urban planners. La part de personnes vivant dans une région urbaine est plus élevé que jamais et continue à croître. L'étalement urbain et la dépendance automobile ont supplanté la ville compacte adaptée aux piétons. La pollution de l'air, le gaspillage du sol, le bruit, et des problèmes de santé pour les habitants en sont la conséquence. Les urbanistes doivent trouver, ensemble avec toute la société, des solutions à ces problèmes complexes. En même temps, il faut assurer la performance économique de la ville et de sa région. Actuellement, une quantité grandissante de données socio-économiques et environnementales est récoltée. Pour mieux comprendre les processus et phénomènes du système complexe "ville", ces données doivent être traitées et analysées. Des nombreuses méthodes pour modéliser et simuler un tel système existent et sont continuellement en développement. Elles peuvent être exploitées par le géographe urbain pour améliorer sa connaissance du métabolisme urbain. Des techniques modernes et innovatrices de visualisation aident dans la communication des résultats de tels modèles et simulations. Cette thèse décrit plusieurs méthodes permettant d'analyser, de modéliser, de simuler et de visualiser des phénomènes urbains. L'analyse de données socio-économiques à très haute dimension à l'aide de réseaux de neurones artificiels, notamment des cartes auto-organisatrices, est montré à travers deux exemples aux échelles différentes. Le problème de modélisation spatio-temporelle et de représentation des données est discuté et quelques ébauches de solutions esquissées. La simulation de la dynamique urbaine, et plus spécifiquement du trafic automobile engendré par les pendulaires est illustrée à l'aide d'une simulation multi-agents. Une section sur les méthodes de visualisation montre des cartes en anamorphoses permettant de transformer l'espace géographique en espace fonctionnel. Un autre type de carte, les cartes circulaires, est présenté. Ce type de carte est particulièrement utile pour les agglomérations urbaines. Quelques questions liées à l'importance de l'échelle dans l'analyse urbaine sont également discutées. Une nouvelle approche pour définir des clusters urbains à des échelles différentes est développée, et le lien avec la théorie de la percolation est établi. Des statistiques fractales, notamment la lacunarité, sont utilisées pour caractériser ces clusters urbains. L'évolution de la population est modélisée à l'aide d'un modèle proche du modèle gravitaire bien connu. Le travail couvre une large panoplie de méthodes utiles en géographie urbaine. Toutefois, il est toujours nécessaire de développer plus loin ces méthodes et en même temps, elles doivent trouver leur chemin dans la vie quotidienne des urbanistes et planificateurs.
Resumo:
BACKGROUND: After sub-total hemi-section of cervical cord at level C7/C8 in monkeys, the ipsilesional hand exhibited a paralysis for a couple of weeks, followed by incomplete recovery of manual dexterity, reaching a plateau after 40-50 days. Recently, we demonstrated that the level of the plateau was related to the size of the lesion and that progressive plastic changes of the motor map in the contralesional motor cortex, particularly the hand representation, took place following a comparable time course. The goal of the present study was to assess, in three macaque monkeys, whether the hand representation in the ipsilesional primary motor cortex (M1) was also affected by the cervical hemi-section.¦RESULTS: Unexpectedly, based on the minor contribution of the ipsilesional hemisphere to the transected corticospinal (CS) tract, a considerable reduction of the hand representation was also observed in the ipsilesional M1. Mapping control experiments ruled out the possibility that changes of motor maps are due to variability of the intracortical microstimulation mapping technique. The extent of the size reduction of the hand area was nearly as large as in the contralesional hemisphere in two of the three monkeys. In the third monkey, it represented a reduction by a factor of half the change observed in the contralesional hemisphere. Although the hand representation was modified in the ipsilesional hemisphere, such changes were not correlated with a contribution of this hemisphere to the incomplete recovery of the manual dexterity for the hand affected by the lesion, as demonstrated by reversible inactivation experiments (in contrast to the contralesional hemisphere). Moreover, despite the size reduction of M1 hand area in the ipsilesional hemisphere, no deficit of manual dexterity for the hand opposite to the cervical hemi-section was detected.¦CONCLUSION: After cervical hemi-section, the ipsilesional motor cortex exhibited substantial reduction of the hand representation, whose extent did not match the small number of axotomized CS neurons. We hypothesized that the paradoxical reduction of hand representation in the ipsilesional hemisphere is secondary to the changes taking place in the contralesional hemisphere, possibly corresponding to postural adjustments and/or re-establishing a balance between the two hemispheres.
Resumo:
Introduction: Non-invasive brain imaging techniques often contrast experimental conditions across a cohort of participants, obfuscating distinctions in individual performance and brain mechanisms that are better characterised by the inter-trial variability. To overcome such limitations, we developed topographic analysis methods for single-trial EEG data [1]. So far this was typically based on time-frequency analysis of single-electrode data or single independent components. The method's efficacy is demonstrated for event-related responses to environmental sounds, hitherto studied at an average event-related potential (ERP) level. Methods: Nine healthy subjects participated to the experiment. Auditory meaningful sounds of common objects were used for a target detection task [2]. On each block, subjects were asked to discriminate target sounds, which were living or man-made auditory objects. Continuous 64-channel EEG was acquired during the task. Two datasets were considered for each subject including single-trial of the two conditions, living and man-made. The analysis comprised two steps. In the first part, a mixture of Gaussians analysis [3] provided representative topographies for each subject. In the second step, conditional probabilities for each Gaussian provided statistical inference on the structure of these topographies across trials, time, and experimental conditions. Similar analysis was conducted at group-level. Results: Results show that the occurrence of each map is structured in time and consistent across trials both at the single-subject and at group level. Conducting separate analyses of ERPs at single-subject and group levels, we could quantify the consistency of identified topographies and their time course of activation within and across participants as well as experimental conditions. A general agreement was found with previous analysis at average ERP level. Conclusions: This novel approach to single-trial analysis promises to have impact on several domains. In clinical research, it gives the possibility to statistically evaluate single-subject data, an essential tool for analysing patients with specific deficits and impairments and their deviation from normative standards. In cognitive neuroscience, it provides a novel tool for understanding behaviour and brain activity interdependencies at both single-subject and at group levels. In basic neurophysiology, it provides a new representation of ERPs and promises to cast light on the mechanisms of its generation and inter-individual variability.
Resumo:
In the context of an autologous cell transplantation study, a unilateral biopsy of cortical tissue was surgically performed from the right dorsolateral prefrontal cortex (dlPFC) in two intact adult macaque monkeys (dlPFC lesioned group), together with the implantation of a chronic chamber providing access to the left motor cortex. Three other monkeys were subjected to the same chronic chamber implantation, but without dlPFC biopsy (control group). All monkeys were initially trained to perform sequential manual dexterity tasks, requiring precision grip. The motor performance and the prehension's sequence (temporal order to grasp pellets from different spatial locations) were analysed for each hand. Following the surgery, transient and moderate deficits of manual dexterity per se occurred in both groups, indicating that they were not due to the dlPFC lesion (most likely related to the recording chamber implantation and/or general anaesthesia/medication). In contrast, changes of motor habit were observed for the sequential order of grasping in the two monkeys with dlPFC lesion only. The changes were more prominent in the monkey subjected to the largest lesion, supporting the notion of a specific effect of the dlPFC lesion on the motor habit of the monkeys. These observations are reminiscent of previous studies using conditional tasks with delay that have proposed a specialization of the dlPFC for visuo-spatial working memory, except that this is in a different context of "free-will", non-conditional manual dexterity task, without a component of working memory.
Resumo:
Sound localization relies on the analysis of interaural time and intensity differences, as well as attenuation patterns by the outer ear. We investigated the relative contributions of interaural time and intensity difference cues to sound localization by testing 60 healthy subjects: 25 with focal left and 25 with focal right hemispheric brain damage. Group and single-case behavioural analyses, as well as anatomo-clinical correlations, confirmed that deficits were more frequent and much more severe after right than left hemispheric lesions and for the processing of interaural time than intensity difference cues. For spatial processing based on interaural time difference cues, different error types were evident in the individual data. Deficits in discriminating between neighbouring positions occurred in both hemispaces after focal right hemispheric brain damage, but were restricted to the contralesional hemispace after focal left hemispheric brain damage. Alloacusis (perceptual shifts across the midline) occurred only after focal right hemispheric brain damage and was associated with minor or severe deficits in position discrimination. During spatial processing based on interaural intensity cues, deficits were less severe in the right hemispheric brain damage than left hemispheric brain damage group and no alloacusis occurred. These results, matched to anatomical data, suggest the existence of a binaural sound localization system predominantly based on interaural time difference cues and primarily supported by the right hemisphere. More generally, our data suggest that two distinct mechanisms contribute to: (i) the precise computation of spatial coordinates allowing spatial comparison within the contralateral hemispace for the left hemisphere and the whole space for the right hemisphere; and (ii) the building up of global auditory spatial representations in right temporo-parietal cortices.
Resumo:
Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature.
Resumo:
Recent technological advances in remote sensing have enabled investigation of the morphodynamics and hydrodynamics of large rivers. However, measuring topography and flow in these very large rivers is time consuming and thus often constrains the spatial resolution and reach-length scales that can be monitored. Similar constraints exist for computational fluid dynamics (CFD) studies of large rivers, requiring maximization of mesh-or grid-cell dimensions and implying a reduction in the representation of bedform-roughness elements that are of the order of a model grid cell or less, even if they are represented in available topographic data. These ``subgrid'' elements must be parameterized, and this paper applies and considers the impact of roughness-length treatments that include the effect of bed roughness due to ``unmeasured'' topography. CFD predictions were found to be sensitive to the roughness-length specification. Model optimization was based on acoustic Doppler current profiler measurements and estimates of the water surface slope for a variety of roughness lengths. This proved difficult as the metrics used to assess optimal model performance diverged due to the effects of large bedforms that are not well parameterized in roughness-length treatments. However, the general spatial flow patterns are effectively predicted by the model. Changes in roughness length were shown to have a major impact upon flow routing at the channel scale. The results also indicate an absence of secondary flow circulation cells in the reached studied, and suggest simpler two-dimensional models may have great utility in the investigation of flow within large rivers. Citation: Sandbach, S. D. et al. (2012), Application of a roughness-length representation to parameterize energy loss in 3-D numerical simulations of large rivers, Water Resour. Res., 48, W12501, doi: 10.1029/2011WR011284.
Resumo:
The retinal pigment epithelium (RPE) is constantly exposed to external injuries which lead to degeneration, dysfunction or loss of RPE cells. The balance between RPE cells death and proliferation may be responsible for several diseases of the underlying retina, including age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Signaling pathways able to control cells proliferation or death usually involve the MAPK (mitogen-activated protein kinases) pathways, which modulate the activity of transcription factors by phosphorylation. UV exposure induces DNA breakdown and causes cellular damage through the production of reactive oxygen species (ROS) leading to programmed cell death. In this study, human retinal pigment epithelial cells ARPE19 were exposed to 100 J/m(2) of UV-C and MAPK pathways were studied. We first showed the expression of the three major MAPK pathways. Then we showed that activator protein-1 (AP-1) was activated through phosphorylation of cJun and cFos, induced by JNK and p38, respectively. Specific inhibitors of both kinases decreased their respective activities and phosphorylation of their nuclear targets (cJun and cFos) and reduced UV-induced cell death. The use of specific kinases inhibitors may provide excellent tools to prevent RPE apoptosis specifically in RPE diseases involving ROS and other stress-related compounds such as in AMD.
Resumo:
The thesis at hand is concerned with the spatio-temporal brain mechanisms of visual food perception as investigated by electrical neuroimaging. Due to the increasing prevalence of obesity and its associated challenges for public health care, there is a need to better understand behavioral and brain processes underlying food perception and food-based decision-making. The first study (Study A) of this thesis was concerned with the role of repeated exposure to visual food cues. In our everyday lives we constantly and repeatedly encounter food and these exposures influence our food choices and preferences. In Study A, we therefore applied electrical neuroimaging analyses of visual evoked potentials to investigate the spatio-temporal brain dynamics linked to the repeated viewing of high- and low-energy food cues (published manuscript: "The role of energetic value in dynamic brain response adaptation during repeated food image viewing" (Lietti et al., 2012)). In this study, we found that repetitions differentially affect behavioral and brain mechanisms when high-energy, as opposed to low-energy foods and non-food control objects, were viewed. The representation of high-energy food remained invariant between initial and repeated exposures indicating that the sight of high-energy dense food induces less behavioral and neural adaptation than the sight of low-energy food and non-food control objects. We discuss this finding in the context of the higher salience (due to greater motivation and higher reward or hedonic valuation) of energy- dense food that likely generates a more mnemonically stable representation. In turn, this more invariant representation of energy-dense food is supposed to (partially) explain why these foods are over-consumed despite of detrimental health consequences. In Study Β we investigated food responsiveness in patients who had undergone Roux-en-Y gastric bypass surgery to overcome excessive obesity. This type of gastric bypass surgery is not only known to alter food appreciation, but also the secretion patterns of adipokines and gut peptides. Study Β aimed at a comprehensive and interdisciplinary investigation of differences along the gut-brain axis in bypass-operated patients as opposed to weight-matched non-operated controls. On the one hand, the spatio-temporal brain dynamics to the visual perception of high- vs. low-energy foods under differing states of motivation towards food intake (i.e. pre- and post-prandial) were assessed and compared between groups. On the other hand, peripheral gut hormone measures were taken in pre- and post-prandial nutrition state and compared between groups. In order to evaluate alterations in the responsiveness along the gut-brain-axis related to gastric bypass surgery, correlations between both measures were compared between both participant groups. The results revealed that Roux-en- Y gastric bypass surgery alters the spatio-temporal brain dynamics to the perception of high- and low-energy food cues, as well as the responsiveness along the gut-brain-axis. The potential role of these response alterations is discussed in relation to previously observed changes in physiological factors and food intake behavior post-Roux-en-Y gastric bypass surgery. By doing so, we highlight potential behavioral, neural and endocrine (i.e. gut hormone) targets for the future development of intervention strategies for deviant eating behavior and obesity. Together, the studies showed that the visual representation of foods in the brain is plastic and that modulations in neural activity are already noted at early stages of visual processing. Different factors of influence such as a repeated exposure, Roux-en-Y gastric bypass surgery, motivation (nutrition state), as well as the energy density of the visually perceived food were identified. En raison de la prévalence croissante de l'obésité et du défi que cela représente en matière de santé publique, une meilleure compréhension des processus comportementaux et cérébraux liés à la nourriture sont nécessaires. En particulier, cette thèse se concentre sur l'investigation des mécanismes cérébraux spatio-temporels liés à la perception visuelle de la nourriture. Nous sommes quotidiennement et répétitivement exposés à des images de nourriture. Ces expositions répétées influencent nos choix, ainsi que nos préférences alimentaires. La première étude (Study A) de cette thèse investigue donc l'impact de ces exposition répétée à des stimuli visuels de nourriture. En particulier, nous avons comparé la dynamique spatio-temporelle de l'activité cérébrale induite par une exposition répétée à des images de nourriture de haute densité et de basse densité énergétique. (Manuscrit publié: "The role of energetic value in dynamic brain response adaptation during repeated food image viewing" (Lietti et al., 2012)). Dans cette étude, nous avons pu constater qu'une exposition répétée à des images représentant de la nourriture de haute densité énergétique, par opposition à de la nourriture de basse densité énergétique, affecte les mécanismes comportementaux et cérébraux de manière différente. En particulier, la représentation neurale des images de nourriture de haute densité énergétique est similaire lors de l'exposition initiale que lors de l'exposition répétée. Ceci indique que la perception d'images de nourriture de haute densité énergétique induit des adaptations comportementales et neurales de moindre ampleur par rapport à la perception d'images de nourriture de basse densité énergétique ou à la perception d'une « catégorie contrôle » d'objets qui ne sont pas de la nourriture. Notre discussion est orientée sur les notions prépondérantes de récompense et de motivation qui sont associées à la nourriture de haute densité énergétique. Nous suggérons que la nourriture de haute densité énergétique génère une représentation mémorielle plus stable et que ce mécanisme pourrait (partiellement) être sous-jacent au fait que la nourriture de haute densité énergétique soit préférentiellement consommée. Dans la deuxième étude (Study Β) menée au cours de cette thèse, nous nous sommes intéressés aux mécanismes de perception de la nourriture chez des patients ayant subi un bypass gastrique Roux- en-Y, afin de réussir à perdre du poids et améliorer leur santé. Ce type de chirurgie est connu pour altérer la perception de la nourriture et le comportement alimentaire, mais également la sécrétion d'adipokines et de peptides gastriques. Dans une approche interdisciplinaire et globale, cette deuxième étude investigue donc les différences entre les patients opérés et des individus « contrôles » de poids similaire au niveau des interactions entre leur activité cérébrale et les mesures de leurs hormones gastriques. D'un côté, nous avons investigué la dynamique spatio-temporelle cérébrale de la perception visuelle de nourriture de haute et de basse densité énergétique dans deux états physiologiques différent (pre- et post-prandial). Et de l'autre, nous avons également investigué les mesures physiologiques des hormones gastriques. Ensuite, afin d'évaluer les altérations liées à l'intervention chirurgicale au niveau des interactions entre la réponse cérébrale et la sécrétion d'hormone, des corrélations entre ces deux mesures ont été comparées entre les deux groupes. Les résultats révèlent que l'intervention chirurgicale du bypass gastrique Roux-en-Y altère la dynamique spatio-temporelle de la perception visuelle de la nourriture de haute et de basse densité énergétique, ainsi que les interactions entre cette dernière et les mesures périphériques des hormones gastriques. Nous discutons le rôle potentiel de ces altérations en relation avec les modulations des facteurs physiologiques et les changements du comportement alimentaire préalablement déjà démontrés. De cette manière, nous identifions des cibles potentielles pour le développement de stratégies d'intervention future, au niveau comportemental, cérébral et endocrinien (hormones gastriques) en ce qui concerne les déviances du comportement alimentaire, dont l'obésité. Nos deux études réunies démontrent que la représentation visuelle de la nourriture dans le cerveau est plastique et que des modulations de l'activité neurale apparaissent déjà à un stade très précoce des mécanismes de perception visuelle. Différents facteurs d'influence comme une exposition repetee, le bypass gastrique Roux-en-Y, la motivation (état nutritionnel), ainsi que la densité énergétique de la nourriture qui est perçue ont pu être identifiés.
Resumo:
High-field (>or=3 T) cardiac MRI is challenged by inhomogeneities of both the static magnetic field (B(0)) and the transmit radiofrequency field (B(1)+). The inhomogeneous B fields not only demand improved shimming methods but also impede the correct determination of the zero-order terms, i.e., the local resonance frequency f(0) and the radiofrequency power to generate the intended local B(1)+ field. In this work, dual echo time B(0)-map and dual flip angle B(1)+-map acquisition methods are combined to acquire multislice B(0)- and B(1)+-maps simultaneously covering the entire heart in a single breath hold of 18 heartbeats. A previously proposed excitation pulse shape dependent slice profile correction is tested and applied to reduce systematic errors of the multislice B(1)+-map. Localized higher-order shim correction values including the zero-order terms for frequency f(0) and radiofrequency power can be determined based on the acquired B(0)- and B(1)+-maps. This method has been tested in 7 healthy adult human subjects at 3 T and improved the B(0) field homogeneity (standard deviation) from 60 Hz to 35 Hz and the average B(1)+ field from 77% to 100% of the desired B(1)+ field when compared to more commonly used preparation methods.