3 resultados para Mammograms
em Université de Lausanne, Switzerland
Resumo:
We studied the influence of signal variability on human and model observers for detection tasks with realistic simulated masses superimposed on real patient mammographic backgrounds and synthesized mammographic backgrounds (clustered lumpy backgrounds, CLB). Results under the signal-known-exactly (SKE) paradigm were compared with signal-known-statistically (SKS) tasks for which the observers did not have prior knowledge of the shape or size of the signal. Human observers' performance did not vary significantly when benign masses were superimposed on real images or on CLB. Uncertainty and variability in signal shape did not degrade human performance significantly compared with the SKE task, while variability in signal size did. Implementation of appropriate internal noise components allowed the fit of model observers to human performance.
Resumo:
BACKGROUND: The European Guidelines specify a minimum of 5,000 screening cases to be read yearly by radiologists carrying out second reading in non-centralized programs. This professional requirement is difficult to reach and/or to implement in regional programs covering a sparse population with a high number of participating radiology units, so that alternative blind double reading strategies must be devised. OBJECTIVE: To evaluate the effect on breast cancer screening performances of two second reading strategies used in non-centralized, low-volume programs. METHODS: Reading performances in two Swiss regional breast cancer screening programs (cantons of Wallis and Vaud), covering female populations, aged 50-69, of about 31'000 and 72'000 inhabitants were computed and compared. Both programs had similar screening regimens and organizations, but differed with respect to second reading. One setting applied a selective strategy whereby only experienced radiologists performed second reading; the other elicited not to restrict second readers on the basis of their individual screening activity. Analysis included some 140,000 mammograms performed between 1999 and 2005. RESULTS: Overall, screening performances improved with increasing total volume of reading, albeit not in a linear fashion. Regardless of setting, radiologists attained a higher level of screening accuracy when performing second rather than first readings, and incident rather than prevalent screening cases. The effect of a selective, small group of second readers appeared to impact favorably on the false-positive rate and other indicators of screening quality. As the learning curve depends on the number of mammograms read, these distinct strategies may bear different outcome in the long run. Implications and practical issues for low-volume programs are discussed.
Resumo:
Purpose: Many countries used the PGMI (P=perfect, G=good, M=moderate, I=inadequate) classification system for assessing the quality of mammograms. Limits inherent to the subjectivity of this classification have been shown. Prior to introducing this system in Switzerland, we wanted to better understand the origin of this subjectivity in order to minimize it. Our study aimed at identifying the main determinants of the variability of the PGMI system and which criteria are the most subjected to subjectivity. Methods and Materials: A focus group composed of 2 experienced radiographers and 2 radiologists specified each PGMI criterion. Ten raters (6 radiographers and 4 radiologists) evaluated twice a panel of 40 randomly selected mammograms (20 analogic and 20 digital) according to these specified PGMI criteria. The PGMI classification was assessed and the intra- and inter-rater reliability was tested for each professional group (radiographer vs radiologist), image technology (analogic vs digital) and PGMI criterion. Results: Some 3,200 images were assessed. The intra-rater reliability appears to be weak, particularly in respect to inter-rater variability. Subjectivity appears to be largely independent of the professional group and image technology. Aspects of the PGMI classification criteria most subjected to variability were identified. Conclusion: Post-test discussions enabled to specify more precisely some criteria. This should reduce subjectivity when applying the PGMI classification system. A concomitant, important effort in training radiographers is also necessary.