2 resultados para Mammogram
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Various centralised mammography screening programmes have shown to reduce breast cancer mortality at reasonable costs. However, mammography screening is not necessarily cost-effective in every situation. Opportunistic screening, the predominant screening modality in several European countries, may under certain circumstances be a cost-effective alternative. In this study, we compared the cost-effectiveness of both screening modalities in Switzerland. METHODS: Using micro-simulation modelling, we predicted the effects and costs of biennial mammography screening for 50-69 years old women between 1999 and 2020, in the Swiss female population aged 30-70 in 1999. A sensitivity analysis on the test sensitivity of opportunistic screening was performed. RESULTS: Organised mammography screening with an 80% participation rate yielded a breast cancer mortality reduction of 13%. Twenty years after the start of screening, the predicted annual breast cancer mortality was 25% lower than in a situation without screening. The 3% discounted cost-effectiveness ratio of organised mammography screening was euro11,512 per life year gained. Opportunistic screening with a similar participation rate was comparably effective, but at twice the costs: euro22,671-24,707 per life year gained. This was mainly related to the high costs of opportunistic mammography and frequent use of imaging diagnostics in combination with an opportunistic mammogram. CONCLUSION: Although data on the performance of opportunistic screening are limited, both opportunistic and organised mammography screening seem effective in reducing breast cancer mortality in Switzerland. However, for opportunistic screening to become equally cost-effective as organised screening, costs and use of additional diagnostics should be reduced.
Resumo:
Background: Publications from the International Breast Screening Network (IBSN) have shown that varying definitions create hurdles for comparison of screening performance. Interval breast cancer rates are particularly affected. Objective: to test whether variations in definition of interval cancer rates (ICR) affect comparisons of international ICR, specific to a comparison of ICR in Norway and North Carolina (NC). Methods: An interval cancer (IC) was defined as a cancer diagnosed following a negative screening mammogram in a defined follow-up period. ICR was calculated for women ages 50-69, at subsequent screening in Norway and NC, during the time period 1996 - 2002. ICR was defined using three different denominators (negative screens, negative final assessments and all screens) and three different numerators (DCIS, invasive cancer and all cancers). ICR was then calculated with two methods: 1) number of ICs divided by the number of screens, and ICs divided by the number of women-years at risk for IC. Results: There were no differences in ICR depending on the definition used. In the 1-12 month follow up period ICR (based on number of screens) were: 0.53, 0.54, and 0.54 for Norway; and 1.20, 1.25 and 1.17 for NC, for negative screens, negative final assessment and all screens, respectively: The same trend was seen for 13-24 and 1-24 months follow-up. Using women-years for the analysis did not change the trend. ICR was higher in NC compared to Norway under all definitions and in all follow-up time periods, regardless of calculation method. Conclusion: The ICR within or between Norway and NC did not differ by definition used. ICR were higher in NC than Norway. There are many potential explanations for the difference.