3 resultados para Malmesbury, James Howard Harris, 3d earl of, 1807-1889.

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to investigate the performance of 3D synchrotron differential phase contrast (DPC) imaging for the visualization of both macroscopic and microscopic aspects of atherosclerosis in the mouse vasculature ex vivo. The hearts and aortas of 2 atherosclerotic and 2 wild-type control mice were scanned with DPC imaging with an isotropic resolution of 15 μm. The coronary artery vessel walls were segmented in the DPC datasets to assess their thickness, and histological staining was performed at the level of atherosclerotic plaques. The DPC imaging allowed for the visualization of complex structures such as the coronary arteries and their branches, the thin fibrous cap of atherosclerotic plaques as well as the chordae tendineae. The coronary vessel wall thickness ranged from 37.4 ± 5.6 μm in proximal coronary arteries to 13.6 ± 3.3 μm in distal branches. No consistent differences in coronary vessel wall thickness were detected between the wild-type and atherosclerotic hearts in this proof-of-concept study, although the standard deviation in the atherosclerotic mice was higher in most segments, consistent with the observation of occasional focal vessel wall thickening. Overall, DPC imaging of the cardiovascular system of the mice allowed for a simultaneous detailed 3D morphological assessment of both large structures and microscopic details.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Purpose: The trabecular bone score (TBS), a novel graylevel texture index determined from lumbar spine DXA scans, correlates with 3D parameters of trabecular bone microarchitecture known to predict fracture. TBS may enhance the identification of patients at increased risk for vertebral fracture independently of bone mineral density (BMD) (Boutroy JBMR 2010; Hans JBMR 2011). Denosumab treatment for 36 months decreased bone turnover, increased BMD, and reduced new vertebral fractures in postmenopausal women with osteoporosis (Cummings NEJM 2009). We explored the effect of denosumab on TBS over 36 months and evaluated the association between TBS and lumbar spine BMD in women who had DXA scans obtained from eligible scanners for TBS evaluation in FREEDOM. Methods: FREEDOM was a 3-year, randomized, double-blind trial that enrolled postmenopausal women with a lumbar spine or total hip DXA T-score __2.5, but not __4.0 at both sites. Women received placebo or 60 mg denosumab every 6 months. A subset of women in FREEDOM participated in a DXA substudy where lumbar spine DXA scans were obtained at baseline and months 1, 6, 12, 24, and 36. We retrospectively applied, in a blinded-to-treatment manner, a novel software program (TBS iNsightR v1.9, Med-Imaps, Pessac, France) to the standard lumbar spine DXA scans obtained in these women to determine their TBS indices at baseline and months 12, 24, and 36. From previous studies, a TBS _1.35 is considered as normal microarchitecture, a TBS between 1.35 and _1.20 as partially deteriorated, and 1.20 reflects degraded microarchitecture. Results: There were 285 women (128 placebo, 157 denosumab) with a TBS value at baseline and _1 post-baseline visit. Their mean age was 73, their mean lumbar spine BMD T-score was _2.79, and their mean lumbar spine TBS was 1.20. In addition to the robust gains in DXA lumbar spine BMD observed with denosumab (9.8% at month 36), there were consistent, progressive, and significant increases in TBS compared with placebo and baseline (Table & Figure). BMD explained a very small fraction of the variance in TBS at baseline (r2_0.07). In addition, the variance in the TBS change was largely unrelated to BMD change, whether expressed in absolute or percentage changes, regardless of treatment, throughout the study (all r2_0.06); indicating that TBS provides distinct information, independently of BMD. Conclusion: In postmenopausal women with osteoporosis, denosumab significantly improved TBS, an index of lumbar spine trabecular microarchitecture, independently of BMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive immunity is initiated in T-cell zones of secondary lymphoid organs. These zones are organized in a rigid 3D network of fibroblastic reticular cells (FRCs) that are a rich cytokine source. In response to lymph-borne antigens, draining lymph nodes (LNs) expand several folds in size, but the fate and role of the FRC network during immune response is not fully understood. Here we show that T-cell responses are accompanied by the rapid activation and growth of FRCs, leading to an expanded but similarly organized network of T-zone FRCs that maintains its vital function for lymphocyte trafficking and survival. In addition, new FRC-rich environments were observed in the expanded medullary cords. FRCs are activated within hours after the onset of inflammation in the periphery. Surprisingly, FRC expansion depends mainly on trapping of naïve lymphocytes that is induced by both migratory and resident dendritic cells. Inflammatory signals are not required as homeostatic T-cell proliferation was sufficient to trigger FRC expansion. Activated lymphocytes are also dispensable for this process, but can enhance the later growth phase. Thus, this study documents the surprising plasticity as well as the complex regulation of FRC networks allowing the rapid LN hyperplasia that is critical for mounting efficient adaptive immunity.