111 resultados para Male Lizards
em Université de Lausanne, Switzerland
Resumo:
Testosterone can benefit individual fitness by increasing ornament colour, aggressiveness, and sperm quality, but it can also impose both metabolic and immunological costs. However, evidence that testosterone causes immuno suppression in freely living populations is scant. We studied the effects of testosterone on one component of the immune system (i.e., the cell-mediated response to phytohaemagglutinin), parasite load, and metabolic rate in the common wall lizard, Podarcis muralis (Laurenti, 1768). For analyses of immunocompetence and parasitism, male lizards were implanted at the end of the breeding season with either empty or testosterone implants and were returned to their site of capture for 5-6 weeks before recapture. For analyses of the effects of testosterone on metabolic rate, male lizards were captured and implanted before hibernation and were held in the laboratory for 1 week prior to calorimetry. Experimental treatment with testosterone decreased the cell-mediated response to the T-cell mitogen phytohemagglutinin and increased mean metabolic rate. No effects of testosterone on the number of ectoparasites, hemoparasites, and resting metabolic rate could be detected. These results are discussed in the framework of the immunocompetence handicap hypothesis and the immuno-redistribution process hypothesis. [Authors]
Resumo:
Glucocorticoids affect physiology and behaviour, reproduction and potentially sexual selection as well. Shortterm and moderate glucocorticoid elevations are suggested to be adaptive, and prolonged and high elevations may be extremely harmful. This suggests that optimal reproductive strategies, and thus sexual selection, may be dose dependent. Here, we investigate effects of moderate and high elevations of blood corticosterone levels on intra- and intersexual behaviour and mating success of male common lizards Lacerta vivipara. Females showed less interest and more aggressive behaviour towards high corticosterone males and blood corticosterone levels affected male reproductive strategy. Males of moderate and high corticosterone elevations, compared with Control males, showed increased interest (i.e., higher number of chases, tongue extrusions, and approaches) towards females and high corticosterone males initiated more copulation attempts. However, neither increased male interest nor increased copulation attempts resulted in more copulations. This provides evidence for a best-of-a-bad-job strategy, where males with higher corticosterone levels compensated for reduced female interest and increased aggressive female behaviour directed towards them, by showing higher interest and by conducting more copulation attempts. Blood corticosterone levels affected intrasexual selection as well since moderate corticosterone levels positively affected male dominance, but dominance did not affect mating success. These findings underline the importance of female mate choice and are in line with adaptive compensatory behaviours of males. They further show that glucocorticoid effects on behaviour are dose dependent and that they have important implications for sexual selection and social interactions, and might potentially affect Darwinian fitness.
Resumo:
The adult sex ratio (ASR) is a key parameter of the demography of human and other animal populations, yet the causes of variation in ASR, how individuals respond to this variation, and how their response feeds back into population dynamics remain poorly understood. A prevalent hypothesis is that ASR is regulated by intrasexual competition, which would cause more mortality or emigration in the sex of increasing frequency. Our experimental manipulation of populations of the common lizard (Lacerta vivipara) shows the opposite effect. Male mortality and emigration are not higher under male-biased ASR. Rather, an excess of adult males begets aggression toward adult females, whose survival and fecundity drop, along with their emigration rate. The ensuing prediction that adult male skew should be amplified and total population size should decline is supported by long-term data. Numerical projections show that this amplifying effect causes a major risk of population extinction. In general, such an "evolutionary trap" toward extinction threatens populations in which there is a substantial mating cost for females, and environmental changes or management practices skew the ASR toward males.
Lifetime and intergenerational fitness consequences of harmful male interactions for female lizards.
Resumo:
Male mating behaviors harmful to females have been described in a wide range of species. However, the direct and indirect fitness consequences of harmful male behaviors have been rarely quantified for females and their offspring, especially for long-lived organisms under natural conditions. Here, lifetime and intergenerational consequences of harmful male interactions were investigated in female common lizards (Lacerta vivipara) using field experiments. We exposed females to male harm by changing the population sex ratio from a normal female-biased to an experimental male-biased sex ratio during the first experimental year. Thereafter, females and their first generation of offspring were monitored during two additional years in a common garden with a female-biased sex ratio. We found strong immediate fitness costs and lower lifetime reproductive success in females subjected to increased male exposure. The immediate fitness costs were partly mitigated by direct compensatory responses after exposure to male excess, but not by indirect benefits through offspring growth, offspring survival, or mating success of offspring. These results support recent empirical findings showing that the direct costs of mating are not outweighed by indirect benefits.
Resumo:
Vitamin E, vitamin A, and carotenoids are essential micronutrients for animals because of their antioxidant and immunostimulant functions and their implications for growth, development, and reproduction. In contrast to mammals and birds, information about their occurrence and distribution is generally lacking in reptiles, constraining our understanding of the use of these micronutrients. Using high-performance liquid chromatography, we determined the concentrations of vitamin E, vitamin A, and carotenoids in plasma, storage sites (liver and abdominal fat bodies), and in the colored ventral skin of male Common Lizards, Lacerta vivipara. All tissues shared a similar micronutrient profile, except the liver, which also showed traces of vitamin A(1). The main vitamin E compound present was a-tocopherol followed by lower concentrations of gamma-(beta-)tocopherol. Vitamin A(2) was the main vitamin A compound and it showed the highest concentration in the liver, where vitamin A(2) esters and traces of vitamin A(1) were found. Lutein was the main carotenoid, and it formed esters in the liver and the ventral skin. Zeaxanthin and low concentrations of beta-carotene were also present. The liver was the main storage site for carotenoid and vitamin A, whereas hepatic vitamin E concentrations resembled those present in abdominal Fat bodies. Compared with abdominal fat bodies, the ventral skin contained lower concentrations of vitamin A and vitamin E, but similar concentrations of carotenoicls. These results suggest that important differences exist in micronutrient presence, concentration, and distribution among tissues of lizards and other taxa such as birds and mammals.
Resumo:
Abstract Carotenoids typically need reflective background components to shine. Such components, iridophores, leucophores, and keratin- and collagen-derived structures, are generally assumed to show no or little environmental variability. Here, we investigate the origin of environmentally induced variation in the carotenoid-based ventral coloration of male common lizards (Lacerta vivipara) by investigating the effects of dietary carotenoids and corticosterone on both carotenoid- and background-related reflectance. We observed a general negative chromatic change that was prevented by β-carotene supplementation. However, chromatic changes did not result from changes in carotenoid-related reflectance or skin carotenoid content but from changes in background-related reflectance that may have been mediated by vitamin A. An in vitro experiment showed that the encountered chromatic changes most likely resulted from changes in iridophore reflectance. Our findings demonstrate that chromatic variation in carotenoid-based ornaments may not exclusively reflect differences in integumentary carotenoid content and, hence, in qualities linked to carotenoid deposition (e.g., foraging ability, immune response, or antioxidant capacity). Moreover, skin carotenoid content and carotenoid-related reflectance were related to male color polymorphism, suggesting that carotenoid-based coloration of male common lizards is a multicomponent signal, with iridophores reflecting environmental conditions and carotenoids reflecting genetically based color morphs.
Resumo:
The optimal number of mate partners for females rarely coincides with that for males, leading to a potential sexual conflict over multiple-partner mating. This suggests that the population sex ratio may affect multiple-partner mating and thus multiple paternity. We investigate the relationship between multiple paternity and the population sex ratio in the polygynandrous common lizard (Lacerta vivipara). In six populations the adult sex ratio was biased toward males, and in another six populations the adult sex ratio was biased toward females, the latter corresponding to the average adult sex ratio encountered in natural populations. In males the frequency and the degree of polygyny were lower in male-biased populations, as expected if competition among males determines polygyny. In females the frequency of polyandry was not different between treatments, and polyandrous females produced larger clutches, suggesting that polyandry might be adaptive. However, in male-biased populations females suffered from reduced reproductive success compared to female-biased populations, and the number of mate partners increased with female body size in polyandrous females. Polyandrous females of male-biased populations showed disproportionately more mating scars, indicating that polyandrous females of male-biased populations had more interactions with males and suggesting that the degree of multiple paternity is controlled by male sexual harassment. Our results thus imply that polyandry may be hierarchically controlled, with females controlling when to mate with multiple partners and male sexual harassment being a proximate determinant of the degree of multiple paternity. The results are also consistent with a sexual conflict in which male behaviors are harmful to females.
Resumo:
Both intra- and inter-sexual selection may crucially determine a male's fitness. Their interplay, which has rarely been experimentally investigated, determines a male's optimal reproductive strategy and thus is of fundamental importance to the understanding of a male's behaviour. Here we investigated the relative importance of intra- and inter-sexual selection for male fitness in the common lizard. We investigated which male traits predict a male's access to reproduction allowing for both selective pressures and comparing it with a staged mating experiment excluding all types of intra-sexual selection. We found that qualitatively better males were more likely to reproduce and that sexual selection was two times stronger when allowing for both selective pressures, suggesting that inter- and intra-sexual selection determines male fitness and confirming the existence of multi-factorial sexual selection. Consequently, to optimize fitness, males should trade their investment between the traits, which are important for inter- and intra-sexual selection.
Resumo:
Sex allocation theory predicts that facultative maternal investment in the rare sex should be favoured by natural selection when breeders experience predictable variation in adult sex ratios (ASRs). We found significant spatial and predictable interannual changes in local ASRs within a natural population of the common lizard where the mean ASR is female-biased, thus validating the key assumptions of adaptive sex ratio models. We tested for facultative maternal investment in the rare sex during and after an experimental perturbation of the ASR by creating populations with female-biased or male-biased ASR. Mothers did not adjust their clutch sex ratio during or after the ASR perturbation, but produced sons with a higher body condition in male-biased populations. However, this differential sex allocation did not result in growth or survival differences in offspring. Our results thus contradict the predictions of adaptive models and challenge the idea that facultative investment in the rare sex might be a mechanism regulating the population sex ratio.
Resumo:
Colouration may either reflect a discrete polymorphism potentially related to life-history strategies, a continuous signal related to individual quality or a combination of both. Recently, Vercken et al. [J. Evol. Biol. (2007) 221] proposed three discrete ventral colour morphs in female common lizards, Lacerta vivipara, and suggested that they reflect alternative reproductive strategies. Here, we provide a quantitative assessment of the phenotypic distribution and determinants of the proposed colour polymorphism. Based on reflectance spectra, we found no evidence for three distinct visual colour classes, but observed continuous variation in colour from pale yellow to orange. Based on a 2-year experiment, we also provide evidence for reversible colour plasticity in response to a manipulation of the adult population sex ratio; yet, a significant portion of the colour variation was invariant throughout an adult female's life. Our results are thus in agreement with continuous colour variation in adults determined by environmental factors and potentially also by genetic factors.
Resumo:
Corticosterone is an important hormone of the stress response that regulates physiological processes and modifies animal behavior. While it positively acts on locomotor activity, it may negatively affect reproduction and social activity. This suggests that corticosterone may promote behaviors that increase survival at the cost of reproduction. In this study, we experimentally investigate the link between corticosterone levels and survival in adult common lizards (Lacerta vivipara) by comparing corticosterone-treated with placebo-treated lizards. We experimentally show that corticosterone enhances energy expenditure, daily activity, food intake, and it modifies the behavioral time budget. Enhanced appetite of corticosterone-treated individuals compensated for increased energy expenditure and corticosterone-treated males showed increased survival. This suggests that corticosterone may promote behaviors that reduce stress and it shows that corticosterone per se does not reduce but directly or indirectly increases longer-term survival. This suggests that the production of corticosterone as a response to a stressor may be an adaptive mechanism that even controls survival.
Resumo:
Inbreeding avoidance is predicted to induce sex biases in dispersal. But which sex should disperse? In polygynous species, females pay higher costs to inbreeding and thus might be expected to disperse more, but empirical evidence consistently reveals male biases. Here, we show that theoretical expectations change drastically if females are allowed to avoid inbreeding via kin recognition. At high inbreeding loads, females should prefer immigrants over residents, thereby boosting male dispersal. At lower inbreeding loads, by contrast, inclusive fitness benefits should induce females to prefer relatives, thereby promoting male philopatry. This result points to disruptive effects of sexual selection. The inbreeding load that females are ready to accept is surprisingly high. In absence of search costs, females should prefer related partners as long as delta<r/(1+r) where r is relatedness and delta is the fecundity loss relative to an outbred mating. This amounts to fitness losses up to one-fifth for a half-sib mating and one-third for a full-sib mating, which lie in the upper range of inbreeding depression values currently reported in natural populations. The observation of active inbreeding avoidance in a polygynous species thus suggests that inbreeding depression exceeds this threshold in the species under scrutiny or that inbred matings at least partly forfeit other mating opportunities for males. Our model also shows that female choosiness should decline rapidly with search costs, stemming from, for example, reproductive delays. Species under strong time constraints on reproduction should thus be tolerant of inbreeding.
Resumo:
Ornament expression fluctuates with age in many organisms. Whether these changes are adaptively plastic is poorly known. In order to understand the ultimate function of melanin-based ornaments, we studied their within-individual fluctuations and their covariation with fitness-related traits. In barn owls (Tyto alba), individuals vary from reddish-brown pheomelanic to white and from immaculate to marked with black eumelanic spots, males being less reddish and less spotted than females. During the first molt, both sexes became less pheomelanic, females displayed larger spots and males fewer spots, but the extent of these changes was not associated with reproduction. At subsequent molts, intra-individual changes in melanin-based traits covaried with simultaneous reproduction changes. Adult females bred earlier in the season and laid larger eggs when they became scattered with larger spots, while adults of both sexes produced larger broods when they became whiter. These results suggest that the production of melanin pigments and fitness-related life history traits are concomitantly regulated in a sex-specific way.
Resumo:
In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.