2 resultados para Magnetic variables measurement

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Bicuspid aortic valve (BAV) causes complex flow patterns in the ascending aorta (AAo), which may compromise the accuracy of flow measurement by phase-contrast magnetic resonance (PC-MR). Therefore, we aimed to assess and compare the accuracy of forward flow measurement in the AAo, where complex flow is more dominant in BAV patients, with flow quantification in the left ventricular outflow tract (LVOT) and the aortic valve orifice (AV), where complex flow is less important, in BAV patients and controls. METHODS AND RESULTS: Flow was measured by PC-MR in 22 BAV patients and 20 controls at the following positions: (i) LVOT, (ii) AV, and (iii) AAo, and compared with the left ventricular stroke volume (LVSV). The correlation between the LVSV and the forward flow in the LVOT, the AV, and the AAo was good in BAV patients (r = 0.97/0.96/0.93; P < 0.01) and controls (r = 0.96/0.93/0.93; P < 0.01). However, in relation with the LVSV, the forward flow in the AAo was mildly underestimated in controls and much more in BAV patients [median (inter-quartile range): 9% (4%/15%) vs. 22% (8%/30%); P < 0.01]. This was not the case in the LVOT and the AV. The severity of flow underestimation in the AAo was associated with flow eccentricity. CONCLUSION: Flow measurement in the AAo leads to an underestimation of the forward flow in BAV patients. Measurement in the LVOT or the AV, where complex flow is less prominent, is an alternative means for quantifying the systolic forward flow in BAV patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effects of recent advances in magnetic resonance imaging (MRI) radiofrequency (RF) coil and parallel imaging technology on brain volume measurement consistency. MATERIALS AND METHODS: In all, 103 whole-brain MRI volumes were acquired at a clinical 3T MRI, equipped with a 12- and 32-channel head coil, using the T1-weighted protocol as employed in the Alzheimer's Disease Neuroimaging Initiative study with parallel imaging accelerations ranging from 1 to 5. An experienced reader performed qualitative ratings of the images. For quantitative analysis, differences in composite width (CW, a measure of image similarity) and boundary shift integral (BSI, a measure of whole-brain atrophy) were calculated. RESULTS: Intra- and intersession comparisons of CW and BSI measures from scans with equal acceleration demonstrated excellent scan-rescan accuracy, even at the highest acceleration applied. Pairs-of-scans acquired with different accelerations exhibited poor scan-rescan consistency only when differences in the acceleration factor were maximized. A change in the coil hardware between compared scans was found to bias the BSI measure. CONCLUSION: The most important findings are that the accelerated acquisitions appear to be compatible with the assessment of high-quality quantitative information and that for highest scan-rescan accuracy in serial scans the acquisition protocol should be kept as consistent as possible over time. J. Magn. Reson. Imaging 2012;36:1234-1240. ©2012 Wiley Periodicals, Inc.