4 resultados para Magellan (Spacecraft)
em Université de Lausanne, Switzerland
Resumo:
It is established that the ratio between step length (SL) and step frequency (SF) is constant over a large range of walking speed. However, few data are available about the spontaneous variability of this ratio during unconstrained outdoor walking, in particular over a sufficient number of steps. The purpose of the present study was to assess the inter- and intra-subject variability of spatio-temporal gait characteristics [SL, SF and walk ratio (WR=SL/SF)] while walking at different freely selected speeds. Twelve healthy subjects walked three times along a 100-m athletic track at: (1). a slower than preferred speed, (2). preferred speed and (3). a faster than preferred speed. Two professional GPS receivers providing 3D positions assessed the walking speed and SF with high precision (less than 0.5% error). Intra-subject variability was calculated as the variation among eight consecutive 5-s samples. WR was found to be constant at preferred and fast speeds [0.41 (0.04) m.s and 0.41 (0.05) m.s respectively] but was higher at slow speeds [0.44 (0.05) m.s]. In other words, between slow and preferred speed, the speed increase was mediated more by a change in SF than SL. The intra-subject variability of WR was low under preferred [CV, coefficient of variation = 1.9 (0.6)%] and fast [CV=1.8 (0.5)%] speed conditions, but higher under low speed condition [CV=4.1 (1.5)%]. On the other hand, the inter-subject variability of WR was 11%, 10% and 12% at slow, preferred and fast walking speeds respectively. It is concluded that the GPS method is able to capture basic gait parameters over a short period of time (5 s). A specific gait pattern for slow walking was observed. Furthermore, it seems that the walking patterns in free-living conditions exhibit low intra-individual variability, but that there is substantial variability between subjects.
Resumo:
PURPOSE: The objective was to explore whether a satellite-based navigation system, global positioning system used in differential mode (DGPS), could accurately assess the speed of running in humans. METHODS: A subject was equipped with a portable GPS receptor coupled to a receiver for differential corrections, while running outdoors on a straight asphalt road at 27 different speeds. Actual speed (reference method) was assessed by chronometry. RESULTS: The accuracy of speed prediction had a standard deviation (SD) of 0.08 km x h(-1) for walking, 0.11 km x h(-1) for running, yielding a coefficient of variation (SD/mean) of 1.38% and 0.82%, respectively. There was a highly significant linear relationship between actual and DGPS speed assessment (r2 = 0.999) with little bias in the prediction equation, because the slope of the regression line was close to unity (0.997). CONCLUSION: the DGPS technique appears to be a valid and inconspicuous tool for "on line" monitoring of the speed of displacement of individuals located on any field on earth, for prolonged periods of time and unlimited distance, but only in specific environmental conditions ("open sky"). Furthermore, the accuracy of speed assessment using the differential GPS mode was improved by a factor of 10 as compared to non-differential GPS.
Resumo:
New Global Positioning System (GPS) receivers allow now to measure a location on earth at high frequency (5Hz) with a centimetric precision using phase differential positioning method. We studied whether such technique was accurate enough to retrieve basic parameters of human locomotion. Eight subjects walked on an athletics track at four different imposed step frequencies (70-130steps/min) plus a run at free pace. Differential carrier phase localization between a fixed base station and the mobile antenna mounted on the walking person was calculated. In parallel, a triaxial accelerometer, attached to the low back, recorded body accelerations. The different parameters were averaged for 150 consecutive steps of each run for each subject (total of 6000 steps analyzed). We observed a perfect correlation between average step duration measured by accelerometer and by GPS (r=0.9998, N=40). Two important parameters for the calculation of the external work of walking were also analyzed, namely the vertical lift of the trunk and the velocity variation per step. For an average walking speed of 4.0km/h, average vertical lift and velocity variation were, respectively, 4.8cm and 0.60km/h. The average intra-individual step-to-step variability at a constant speed, which includes GPS errors and the biological gait style variation, were found to be 24. 5% (coefficient of variation) for vertical lift and 44.5% for velocity variation. It is concluded that GPS technique can provide useful biomechanical parameters for the analysis of an unlimited number of strides in an unconstrained free-living environment.
Resumo:
Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.