3 resultados para Madison Guaranty Savings
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Lipid-lowering therapy is costly but effective at reducing coronary heart disease (CHD) risk. OBJECTIVE: To assess the cost-effectiveness and public health impact of Adult Treatment Panel III (ATP III) guidelines and compare with a range of risk- and age-based alternative strategies. DESIGN: The CHD Policy Model, a Markov-type cost-effectiveness model. DATA SOURCES: National surveys (1999 to 2004), vital statistics (2000), the Framingham Heart Study (1948 to 2000), other published data, and a direct survey of statin costs (2008). TARGET POPULATION: U.S. population age 35 to 85 years. Time Horizon: 2010 to 2040. PERSPECTIVE: Health care system. INTERVENTION: Lowering of low-density lipoprotein cholesterol with HMG-CoA reductase inhibitors (statins). OUTCOME MEASURE: Incremental cost-effectiveness. RESULTS OF BASE-CASE ANALYSIS: Full adherence to ATP III primary prevention guidelines would require starting (9.7 million) or intensifying (1.4 million) statin therapy for 11.1 million adults and would prevent 20,000 myocardial infarctions and 10,000 CHD deaths per year at an annual net cost of $3.6 billion ($42,000/QALY) if low-intensity statins cost $2.11 per pill. The ATP III guidelines would be preferred over alternative strategies if society is willing to pay $50,000/QALY and statins cost $1.54 to $2.21 per pill. At higher statin costs, ATP III is not cost-effective; at lower costs, more liberal statin-prescribing strategies would be preferred; and at costs less than $0.10 per pill, treating all persons with low-density lipoprotein cholesterol levels greater than 3.4 mmol/L (>130 mg/dL) would yield net cost savings. RESULTS OF SENSITIVITY ANALYSIS: Results are sensitive to the assumptions that LDL cholesterol becomes less important as a risk factor with increasing age and that little disutility results from taking a pill every day. LIMITATION: Randomized trial evidence for statin effectiveness is not available for all subgroups. CONCLUSION: The ATP III guidelines are relatively cost-effective and would have a large public health impact if implemented fully in the United States. Alternate strategies may be preferred, however, depending on the cost of statins and how much society is willing to pay for better health outcomes. FUNDING: Flight Attendants' Medical Research Institute and the Swanson Family Fund. The Framingham Heart Study and Framingham Offspring Study are conducted and supported by the National Heart, Lung, and Blood Institute.
Resumo:
The trabecular bone score (TBS, Med-Imaps, Pessac, France) is an index of bone microarchitecture texture extracted from anteroposterior dual-energy X-ray absorptiometry images of the spine. Previous studies have documented the ability of TBS of the spine to differentiate between women with and without fractures among age- and areal bone mineral density (aBMD)-matched controls, as well as to predict future fractures. In this cross-sectional analysis of data collected from 3 geographically dispersed facilities in the United States, we investigated age-related changes in the microarchitecture of lumbar vertebrae as assessed by TBS in a cohort of non-Hispanic US white American women. All subjects were 30 yr of age and older and had an L1-L4aBMDZ-score within ±2 SD of the population mean. Individuals were excluded if they had fractures, were on any osteoporosis treatment, or had any illness that would be expected to impact bone metabolism. All data were extracted from Prodigy dual-energy X-ray absorptiometry devices (GE-Lunar, Madison, WI). Cross-calibrations between the 3 participating centers were performed for TBS and aBMD. aBMD and TBS were evaluated for spine L1-L4 but also for all other possible vertebral combinations. To validate the cohort, a comparison between the aBMD normative data of our cohort and US non-Hispanic white Lunar data provided by the manufacturer was performed. A database of 619 non-Hispanic US white women, ages 30-90 yr, was created. aBMD normative data obtained from this cohort were not statistically different from the non-Hispanic US white Lunar normative data provided by the manufacturer (p = 0.30). This outcome thereby indirectly validates our cohort. TBS values at L1-L4 were weakly inversely correlated with body mass index (r = -0.17) and weight (r = -0.16) and not correlated with height. TBS values for all lumbar vertebral combinations decreased significantly with age. There was a linear decrease of 16.0% (-2.47 T-score) in TBS at L1-L4 between 45 and 90 yr of age (vs. -2.34 for aBMD). Microarchitectural loss rate increased after age 65 by 50% (-0.004 to -0.006). Similar results were obtained for other combinations of lumbar vertebra. TBS, an index of bone microarchitectural texture, decreases with advancing age in non-Hispanic US white women. Little change in TBS is observed between ages 30 and 45. Thereafter, a progressive decrease is observed with advancing age. The changes we observed in these American women are similar to that previously reported for a French population of white women (r(2) > 0.99). This reference database will facilitate the use of TBS to assess bone microarchitectural deterioration in clinical practice.
Resumo:
The World Health Organization (WHO) criteria for the diagnosis of osteoporosis are mainly applicable for dual X-ray absorptiometry (DXA) measurements at the spine and hip levels. There is a growing demand for cheaper devices, free of ionizing radiation such as promising quantitative ultrasound (QUS). In common with many other countries, QUS measurements are increasingly used in Switzerland without adequate clinical guidelines. The T-score approach developed for DXA cannot be applied to QUS, although well-conducted prospective studies have shown that ultrasound could be a valuable predictor of fracture risk. As a consequence, an expert committee named the Swiss Quality Assurance Project (SQAP, for which the main mission is the establishment of quality assurance procedures for DXA and QUS in Switzerland) was mandated by the Swiss Association Against Osteoporosis (ASCO) in 2000 to propose operational clinical recommendations for the use of QUS in the management of osteoporosis for two QUS devices sold in Switzerland. Device-specific weighted "T-score" based on the risk of osteoporotic hip fractures as well as on the prediction of DXA osteoporosis at the hip, according to the WHO definition of osteoporosis, were calculated for the Achilles (Lunar, General Electric, Madison, Wis.) and Sahara (Hologic, Waltham, Mass.) ultrasound devices. Several studies (totaling a few thousand subjects) were used to calculate age-adjusted odd ratios (OR) and area under the receiver operating curve (AUC) for the prediction of osteoporotic fracture (taking into account a weighting score depending on the design of the study involved in the calculation). The ORs were 2.4 (1.9-3.2) and AUC 0.72 (0.66-0.77), respectively, for the Achilles, and 2.3 (1.7-3.1) and 0.75 (0.68-0.82), respectively, for the Sahara device. To translate risk estimates into thresholds for clinical application, 90% sensitivity was used to define low fracture and low osteoporosis risk, and a specificity of 80% was used to define subjects as being at high risk of fracture or having osteoporosis at the hip. From the combination of the fracture model with the hip DXA osteoporotic model, we found a T-score threshold of -1.2 and -2.5 for the stiffness (Achilles) determining, respectively, the low- and high-risk subjects. Similarly, we found a T-score at -1.0 and -2.2 for the QUI index (Sahara). Then a screening strategy combining QUS, DXA, and clinical factors for the identification of women needing treatment was proposed. The application of this approach will help to minimize the inappropriate use of QUS from which the whole field currently suffers.