44 resultados para MULTIVARIATE APPROACH
em Université de Lausanne, Switzerland
Resumo:
The predictive potential of six selected factors was assessed in 72 patients with primary myelodysplastic syndrome using univariate and multivariate logistic regression analysis of survival at 18 months. Factors were age (above median of 69 years), dysplastic features in the three myeloid bone marrow cell lineages, presence of chromosome defects, all metaphases abnormal, double or complex chromosome defects (C23), and a Bournemouth score of 2, 3, or 4 (B234). In the multivariate approach, B234 and C23 proved to be significantly associated with a reduction in the survival probability. The similarity of the regression coefficients associated with these two factors means that they have about the same weight. Consequently, the model was simplified by counting the number of factors (0, 1, or 2) present in each patient, thus generating a scoring system called the Lausanne-Bournemouth score (LB score). The LB score combines the well-recognized and easy-to-use Bournemouth score (B score) with the chromosome defect complexity, C23 constituting an additional indicator of patient outcome. The predicted risk of death within 18 months calculated from the model is as follows: 7.1% (confidence interval: 1.7-24.8) for patients with an LB score of 0, 60.1% (44.7-73.8) for an LB score of 1, and 96.8% (84.5-99.4) for an LB score of 2. The scoring system presented here has several interesting features. The LB score may improve the predictive value of the B score, as it is able to recognize two prognostic groups in the intermediate risk category of patients with B scores of 2 or 3. It has also the ability to identify two distinct prognostic subclasses among RAEB and possibly CMML patients. In addition to its above-described usefulness in the prognostic evaluation, the LB score may bring new insights into the understanding of evolution patterns in MDS. We used the combination of the B score and chromosome complexity to define four classes which may be considered four possible states of myelodysplasia and which describe two distinct evolutional pathways.
Resumo:
We propose a multivariate approach to the study of geographic species distribution which does not require absence data. Building on Hutchinson's concept of the ecological niche, this factor analysis compares, in the multidimensional space of ecological variables, the distribution of the localities where the focal species was observed to a reference set describing the whole study area. The first factor extracted maximizes the marginality of the focal species, defined as the ecological distance between the species optimum and the mean habitat within the reference area. The other factors maximize the specialization of this focal species, defined as the ratio of the ecological variance in mean habitat to that observed for the focal species. Eigenvectors and eigenvalues are readily interpreted and can be used to build habitat-suitability maps. This approach is recommended in Situations where absence data are not available (many data banks), unreliable (most cryptic or rare species), or meaningless (invaders). We provide an illustration and validation of the method for the alpine ibex, a species reintroduced in Switzerland which presumably has not yet recolonized its entire range.
Resumo:
BACKGROUND: Pathological complete response (pCR) following chemotherapy is strongly associated with both breast cancer subtype and long-term survival. Within a phase III neoadjuvant chemotherapy trial, we sought to determine whether the prognostic implications of pCR, TP53 status and treatment arm (taxane versus non-taxane) differed between intrinsic subtypes. PATIENTS AND METHODS: Patients were randomized to receive either six cycles of anthracycline-based chemotherapy or three cycles of docetaxel then three cycles of eprirubicin/docetaxel (T-ET). pCR was defined as no evidence of residual invasive cancer (or very few scattered tumour cells) in primary tumour and lymph nodes. We used a simplified intrinsic subtypes classification, as suggested by the 2011 St Gallen consensus. Interactions between pCR, TP53 status, treatment arm and intrinsic subtype on event-free survival (EFS), distant metastasis-free survival (DMFS) and overall survival (OS) were studied using a landmark and a two-step approach multivariate analyses. RESULTS: Sufficient data for pCR analyses were available in 1212 (65%) of 1856 patients randomized. pCR occurred in 222 of 1212 (18%) patients: 37 of 496 (7.5%) luminal A, 22 of 147 (15%) luminal B/HER2 negative, 51 of 230 (22%) luminal B/HER2 positive, 43 of 118 (36%) HER2 positive/non-luminal, 69 of 221(31%) triple negative (TN). The prognostic effect of pCR on EFS did not differ between subtypes and was an independent predictor for better EFS [hazard ratio (HR) = 0.40, P < 0.001 in favour of pCR], DMFS (HR = 0.32, P < 0.001) and OS (HR = 0.32, P < 0.001). Chemotherapy arm was an independent predictor only for EFS (HR = 0.73, P = 0.004 in favour of T-ET). The interaction between TP53, intrinsic subtypes and survival outcomes only approached statistical significance for EFS (P = 0.1). CONCLUSIONS: pCR is an independent predictor of favourable clinical outcomes in all molecular subtypes in a two-step multivariate analysis. CLINICALTRIALSGOV: EORTC 10994/BIG 1-00 Trial registration number NCT00017095.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
Background: Conventional magnetic resonance imaging (MRI) techniques are highly sensitive to detect multiple sclerosis (MS) plaques, enabling a quantitative assessment of inflammatory activity and lesion load. In quantitative analyses of focal lesions, manual or semi-automated segmentations have been widely used to compute the total number of lesions and the total lesion volume. These techniques, however, are both challenging and time-consuming, being also prone to intra-observer and inter-observer variability.Aim: To develop an automated approach to segment brain tissues and MS lesions from brain MRI images. The goal is to reduce the user interaction and to provide an objective tool that eliminates the inter- and intra-observer variability.Methods: Based on the recent methods developed by Souplet et al. and de Boer et al., we propose a novel pipeline which includes the following steps: bias correction, skull stripping, atlas registration, tissue classification, and lesion segmentation. After the initial pre-processing steps, a MRI scan is automatically segmented into 4 classes: white matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and partial volume. An expectation maximisation method which fits a multivariate Gaussian mixture model to T1-w, T2-w and PD-w images is used for this purpose. Based on the obtained tissue masks and using the estimated GM mean and variance, we apply an intensity threshold to the FLAIR image, which provides the lesion segmentation. With the aim of improving this initial result, spatial information coming from the neighbouring tissue labels is used to refine the final lesion segmentation.Results:The experimental evaluation was performed using real data sets of 1.5T and the corresponding ground truth annotations provided by expert radiologists. The following values were obtained: 64% of true positive (TP) fraction, 80% of false positive (FP) fraction, and an average surface distance of 7.89 mm. The results of our approach were quantitatively compared to our implementations of the works of Souplet et al. and de Boer et al., obtaining higher TP and lower FP values.Conclusion: Promising MS lesion segmentation results have been obtained in terms of TP. However, the high number of FP which is still a well-known problem of all the automated MS lesion segmentation approaches has to be improved in order to use them for the standard clinical practice. Our future work will focus on tackling this issue.
Resumo:
BACKGROUND: Previous observations found a high prevalence of obstructive sleep apnea (OSA) in the hemodialysis population, but the best diagnostic approach remains undefined. We assessed OSA prevalence and performance of available screening tools to propose a specific diagnostic algorithm. METHODS: 104 patients from 6 Swiss hemodialysis centers underwent polygraphy and completed 3 OSA screening scores: STOP-BANG, Berlin's Questionnaire, and Adjusted Neck Circumference. The OSA predictors were identified on a derivation population and used to develop the diagnostic algorithm, which was validated on an independent population. RESULTS: We found 56% OSA prevalence (AHI ≥ 15/h), which was largely underdiagnosed. Screening scores showed poor performance for OSA screening (ROC areas 0.538 [SE 0.093] to 0.655 [SE 0.083]). Age, neck circumference, and time on renal replacement therapy were the best predictors of OSA and were used to develop a screening algorithm, with higher discriminatory performance than classical screening tools (ROC area 0.831 [0.066]). CONCLUSIONS: Our study confirms the high OSA prevalence and highlights the low diagnosis rate of this treatable cardiovascular risk factor in the hemodialysis population. Considering the poor performance of OSA screening tools, we propose and validate a specific algorithm to identify hemodialysis patients at risk for OSA for whom further sleep investigations should be considered.
Resumo:
This paper provides a comprehensive evaluation of the effects of benefit sanctions on post-unemployment outcomes such as post-unemployment employment stability and earnings. We use rich register data which allow us to distinguish between a warning that a benefit reduction may take place in the near future and the actual withdrawal of unemployment benefits. Adopting a multivariate mixed proportional hazard approach to address selectivity, we find that warnings do not affect subsequent employment stability but do reduce post-unemployment earnings. Actual benefit reductions lower the quality of post-unemployment jobs both in terms of job duration as well as in terms of earnings. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
The long term goal of this research is to develop a program able to produce an automatic segmentation and categorization of textual sequences into discourse types. In this preliminary contribution, we present the construction of an algorithm which takes a segmented text as input and attempts to produce a categorization of sequences, such as narrative, argumentative, descriptive and so on. Also, this work aims at investigating a possible convergence between the typological approach developed in particular in the field of text and discourse analysis in French by Adam (2008) and Bronckart (1997) and unsupervised statistical learning.
Resumo:
Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.