79 resultados para MECHANICAL STRETCH

em Université de Lausanne, Switzerland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background : Epidermolytic hyperkeratosis (bullous congenital ichthyosiform erythroderma), characterized by ichthyotic, rippled hyperkeratosis, erythroderma and skin blistering, is a rare autosomal dominant disease caused by mutations in keratin 1 or keratin 10 (K10) genes. A severe phenotype is caused by a missense mutation in a highly conserved arginine residue at position 156 (R156) in K10. Objectives: To analyse molecular pathomechanisms of hyperproliferation and hyperkeratosis, we investigated the defects in mechanosensation and mechanotransduction in keratinocytes carrying the K10R156H mutation. Methods: Differentiated primary human keratinocytes infected with lentiviral vectors carrying wild-type K10 (K10wt) or mutated K10R156H were subjected to 20% isoaxial stretch. Cellular fragility and mechanosensation were studied by analysis of mitogen-activated protein kinase activation and cytokine release. Results: Cultured keratinocytes expressing K10R156H showed keratin aggregate formation at the cell periphery, whereas the filament network in K10wt cells was normal. Under stretching conditions K10R156H keratinocytes exhibited about a twofold higher level of filament collapse compared with steady state. In stretched K10R156H cells, higher p38 activation, higher release of tumour necrosis factor-alpha and RANTES but reduced interleukin-1 beta secretion compared with K10wt cells was observed. Conclusions: These results demonstrate that the R156H mutation in K10 destabilizes the keratin intermediate filament network and affects stress signalling and inflammatory responses to mechanical stretch in differentiated cultured keratinocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND:: Mechanical stretch has been shown to induce vascular remodeling and increase vessel density, but the pathophysiologic mechanisms and the morphologic changes induced by tensile forces to dermal vessels are poorly understood. METHODS:: A custom computer-controlled stretch device was designed and applied to the backs of C57BL/6 mice (n = 38). Dermal and vascular remodeling was studied over a 7-day period. Corrosion casting and three-dimensional scanning electron microscopy and CD31 staining were performed to analyze microvessel morphology. Hypoxia was assessed by immunohistochemistry. Western blot analysis of vascular endothelial growth factor (VEGF) and mRNA expression of VEGF receptors was performed. RESULTS:: Skin stretching was associated with increased angiogenesis as demonstrated by CD31 staining and vessel corrosion casting where intervascular distance and vessel diameter were decreased (p < 0.01). Immediately after stretching, VEGF dimers were increased. Messenger RNA expression of VEGF receptor 1, VEGF receptor 2, neuropilin 1, and neuropilin 2 was increased starting as early as 2 hours after stretching. Highly proliferating epidermal cells induced epidermal hypoxia starting at day 3 (p < 0.01). CONCLUSIONS:: Identification of significant hypoxic cells occurred after identification of neovessels, suggesting an alternative mechanism. Increased expression of angiogenic receptors and stabilization of VEGF dimers may be involved in a mechanotransductive, prehypoxic induction of neovascularization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The process of epidermal differentiation involves proliferation, differentiation, migration and maturation of keratinocytes to form an impermeable barrier against water loss and outside environment. It is controlled by highly balanced regulatory machinery, involving many molecules that are still under investigation.Homeobox proteins are involved in body patterning and morphogenesis of organs and are studied as potentially good candidates to regulate this process. In the first project we investigated the role of a protein named HOP which belongs to a group of homeobox proteins. Even if HOP is a small protein almost completely composed of the homeodomain and without DNA binding capacity, it is considered as transcriptional regulator in different tissues. HOP interacts with serum response factor (SRF) and histone deacetylase type 2 (HDAC2). By microarray analysis we found that HOP expression increases in cultured human primary keratinocytes (NHK) which undergo calcium-induced differentiation. HOP protein was localized in granular layer of the epidermis of healthy individuals. Lack of HOP was demonstrated in psoriatic lesions, whereas a strong expression was demonstrated in the lesional skin of patients affected with lichen planus (LP). Since LP is characterized by hypergranulosis while psoriatic lesions by progressive lack of the granular layer, the obtained data indicated that HOP might have a potential function in granular layer of epidermis. To investigate HOP function, we inhibited its expression by using HOP specific StealthRNAi and we overexpressed HOP using lentiviral vectors in differentiating NHK. The conclusion of both experiments indicated that HOP positively regulates the expression of late differentiation markers, such as profilaggrin, loricrin and transglutaminase 1. The in vitro data were next confirmed in vivo using HOP knockout mouse model.The second part of my study involved analysis of mechanisms underlying the pathogenesis of epidermolytic hyperkeratosis (EHK). EHK is a genetic disorder characterized by erythema, skin blistering, keratinocyte hyperproliferation and hyperkeratosis. EHK is caused by mutations in keratin 1 or 10 (K1, K10) which are major structural proteins of differentiated keratinocytes and participate in the cellular scaffold formation. To investigate how the structural proteins carrying mutations alter cellular signaling, we established an in vitro model for EHK by overexpression of one of the most common K10 mutations reported so far (K10R156H), in primary human keratinocytes. In order to mimic the in vivo situation, mutated keratinocytes growing on silicone membranes were subjected to mechanical stretch. We observed strong collapse of KIF in K10R156H keratinocytes when subjected to stretch for 30 minutes. Our data demonstrated stronger activation of p38, a member of MAPK stress signaling pathways, in K10R156H when compared to control cells. We demonstrated also that K10R156H keratinocytes showed an induction of TNF-α and RANTES release in response to stretch.Taken together these studies characterize a novel regulator of epidermal differentiation - HOP and demonstrate new aspects implicated in the pathogenesis of EHK.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Left ventricular hypertrophy (LVH) is due to pressure overload or mechanical stretch and is thought to be associated with remodeling of gap-junctions. We investigated whether the expression of connexin 43 (Cx43) is altered in humans in response to different degrees of LVH. The expression of Cx43 was analyzed by quantitative polymerase chain reaction, Western blot analysis and immunohistochemistry on left ventricular biopsies from patients undergoing aortic or mitral valve replacement. Three groups were analyzed: patients with aortic stenosis with severe LVH (n=9) versus only mild LVH (n=7), and patients with LVH caused by mitral regurgitation (n=5). Cx43 mRNA expression and protein expression were similar in the three groups studied. Furthermore, immunohistochemistry revealed no change in Cx43 distribution. We can conclude that when compared with mild LVH or with LVH due to volume overload, severe LVH due to chronic pressure overload is not accompanied by detectable changes of Cx43 expression or spatial distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The net mechanical efficiency of positive work (eta(pos)) has been shown to increase if it is immediately preceded by negative work. This phenomenon is explained by the storage of elastic energy during the negative phase and its release during the subsequent positive phase. If a transition time (T) takes place, the elastic energy is dissipated into heat. The aim of the present study was to investigate the relationship between eta(pos) and T, and to determine the minimal T required so that eta(pos) reached its minimal value. Seven healthy male subjects were tested during four series of lowering-raising of the body mass. In the first series (S (0)), the negative and positive phases were executed without any transition time. In the three other series, T was varied by a timer (0.12, 0.24 and 0.56 s for series S (1), S (2) and S (3), respectively). These exercises were performed on a force platform sensitive to vertical forces to measure the mechanical work and a gas analyser was used to determine the energy expenditure. The results indicated that eta(pos) was the highest (31.1%) for the series without any transition time (S (0)). The efficiencies observed with transition times (S (1), S (2) and S (3)) were 27.7, 26.0 and 23.8%, respectively, demonstrating that T plays an important role for mechanical efficiency. The investigation of the relationship between eta(pos) and T revealed that the minimal T required so that eta(pos) reached its minimal value is 0.59 s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytoskeleton, composed of actin filaments, intermediate filaments, and microtubules, is a highly dynamic supramolecular network actively involved in many essential biological mechanisms such as cellular structure, transport, movements, differentiation, and signaling. As a first step to characterize the biophysical changes associated with cytoskeleton functions, we have developed finite elements models of the organization of the cell that has allowed us to interpret atomic force microscopy (AFM) data at a higher resolution than that in previous work. Thus, by assuming that living cells behave mechanically as multilayered structures, we have been able to identify superficial and deep effects that could be related to actin and microtubule disassembly, respectively. In Cos-7 cells, actin destabilization with Cytochalasin D induced a decrease of the visco-elasticity close to the membrane surface, while destabilizing microtubules with Nocodazole produced a stiffness decrease only in deeper parts of the cell. In both cases, these effects were reversible. Cell softening was measurable with AFM at concentrations of the destabilizing agents that did not induce detectable effects on the cytoskeleton network when viewing the cells with fluorescent confocal microscopy. All experimental results could be simulated by our models. This technology opens the door to the study of the biophysical properties of signaling domains extending from the cell surface to deeper parts of the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates in vitro growth of human urinary tract smooth muscle cells under static conditions and mechanical stimulation. The cells were cultured on collagen type I- and laminin-coated silicon membranes. Using a Flexcell device for mechanical stimulation, a cyclic strain of 0-20% was applied in a strain-stress-time model (stretch, 104 min relaxation, 15 s), imitating physiological bladder filling and voiding. Cell proliferation and alpha-actin, calponin, and caldesmon phenotype marker expression were analyzed. Nonstretched cells showed significant better growth on laminin during the first 8 days, thereafter becoming comparable to cells grown on collagen type I. Cyclic strain significantly reduced cell growth on both surfaces; however, better growth was observed on laminin. Neither the type of surface nor mechanical stimulation influenced the expression pattern of phenotype markers; alpha-actin was predominantly expressed. Coating with the extracellular matrix protein laminin improved in vitro growth of human urinary tract smooth muscle cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to compare the mechanical external work (per kg) and pendular energy transduction at preferred walking speed (PWS) in obese versus normal body mass subjects to investigate whether obese adults adopt energy conserving gait mechanics. METHODS: The mechanical external work (Wext) and the fraction of mechanical energy recovered by the pendular mechanism (Rstep) were computed using kinematic data acquired by an optoelectronic system and were compared in 30 obese (OG; body mass index [BMI] = 39.6 +/- 0.6 kg m(-2); 29.5 +/- 1.3 yr) and 19 normal body mass adults (NG; BMI = 21.4 +/- 0.5 kg m(-2); 31.2 +/- 1.2 yr) walking at PWS. RESULTS: PWS was significantly lower in OG (1.18 +/- 0.02 m s(-1)) than in NG (1.33 +/- 0.02 m s(-1); P <or= 0.001). There was no significant difference in Wext per unit mass between groups (OG: 0.36 +/- 0.03 J kg(-1) m(-1); NG: 0.31 +/- 0.02 J kg(-1) m(-1); P = 0.12). Rstep was significantly lower in OG (68.4% +/- 2.0%) compared with NG (74.4% +/- 1.0%; P = 0.01). In OG only, Wext per unit mass was positively correlated with PWS (r = 0.57; P < 0.001). CONCLUSION: Obese adults do not appear to alter their gait to improve pendular energy transduction and may select slower PWS to reduce mechanical and metabolic work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present review will briefly summarize the interplay between coagulation and inflammation, highlighting possible effects of direct inhibition of factor Xa and thrombin beyond anticoagulation. Additionally, the rationale for the use of the new direct oral anticoagulants (DOACs) for indications such as cancer-associated venous thromboembolism (CAT), mechanical heart valves, thrombotic anti-phospholipid syndrome (APS), and heparin-induced thrombocytopenia (HIT) will be explored. Published data on patients with cancer or mechanical heart valves treated with DOAC will be discussed, as well as planned studies in APS and HIT. Although at the present time published evidence is insufficient for recommending DOAC in the above-mentioned indications, there are good arguments in favor of clinical trials investigating their efficacy in these contexts. Direct inhibition of factor Xa or thrombin may reveal interesting effects beyond anticoagulation as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For several decades mechanical properties of shallow formations (soil) obtained by sonic to ultrasonic wave testing were reported to be greater than those based on mechanical tests. The present article relying on a statistical analysis of more than 300 tests shows that elastic moduli of the soil can indeed be obtained from (ultra)sonic tests and that they are identical to those resulting from mechanical tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rrésumé: La première description dans une publication médicale des douleurs neuropathiques remonte à 1872, le Dr S.W. Mitchell les résumant ainsi [...]" la causalgie est la plus terrible des tortures qu'une lésion nerveuse puisse entraîner "[...]. Par définition, la douleur neuropathique est une douleur chronique faisant suite à une lésion ou dysfonction du système nerveux. Malgré les progrès faits dans la compréhension de ce syndrome, le détail des mécanismes impliqués nous échappe encore et son traitement reste insuffisant car moins de 50% des patients sont soulagés par les thérapies actuelles. Différents modèles expérimentaux ont été élaborés chez l'animal de laboratoire, en particulier des modèles de lésion de nerfs périphériques chez le rat, permettant des investigations tant moléculaires que fonctionnelles des mécanismes impliqués dans le développement de ces douleurs. En revanche, peu de modèles existent chez la souris, alors que cet animal, grâce à la transgénèse, est très fréquemment utilisé pour l'approche fonctionnelle ciblée sur un gène. Dans l'étude présentée ici, nous avons évalué chez la souris C57BL/6 l'adaptation d'un modèle neuropathique, proposé une nouvelle modalité de mesure de la sensibilité douloureuse adaptée à la souris et défini une méthode d'analyse performante des résultats. Ce modèle, dit de lésion avec épargne nerveuse (spared Werve injury, SNI), consiste en la lésion de deux des trois branches du nerf sciatique, soit les nerfs peronier commun et tibial. La troisième branche, le nerf sural est laissé intact et c'est dans le territoire cutané de ce dernier que la sensibilité douloureuse à des stimulations mécaniques est enregistrée. Des filaments calibrés de force croissante sont appliqués sur la surface de la patte impliquée et la fréquence relative de retrait de la patte a été modélisée mathématiquement et analysée par un modèle statistique intégrant tous les paramètres de l'expérience (mixed-effects model). Des variantes chirurgicales lésant séquentiellement les trois branches du nerf sciatique ainsi que la réponse en fonction du sexe de l'animal ont également été évaluées. La lésion SNI entraîne une hypersensibilité mécanique marquée comparativement aux souris avec chirurgie contrôle; cet effet est constant entre les animaux et persiste durant les quatre semaines de l'étude. De subtiles différences entre les variables, y compris une divergence de sensibilité mécanique entre les sexes, ont été démontrées. La nécessité de léser le nerf tibial pour le développement des symptômes a également été documentée par notre méthode d'évaluation et d'analyse. En conclusion, nous avons validé le modèle SNI chez la souris par l'apparition d'un symptôme reproductible et apparenté à l'allodynie mécanique décrite par les patients souffrant de douleurs neuropathiques. Nous avons développé des méthodes d'enregistrement et d'analyse de la sensibilité douloureuse sensibles qui permettent la mise en évidence de facteurs intrinsèques et extrinsèques de variation de la réponse. Le modèle SNI utilisé chez des souris génétiquement modifiées, de par sa précision et reproductibilité, pourra permettre la discrimination de facteurs génétiques et épigénétiques contribuant au développement et à la persistance de douleurs neuropathiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. Both hypocapnia and hypercapnia can be deleterious to brain injured patients. Strict PaCO2 control is difficult to achieve because of patient's instability and unpredictable effects of ventilator settings changes. OBJECTIVE. The aim of this study was to evaluate our ability to comply with a protocol of controlled mechanical ventilation (CMV) aiming at a PaCO2 between 35 and 40 mmHg in patients requiring neuro-resuscitation. METHODS. Retrospective analysis of consecutive patients (2005-2011) requiring intracranial pressure (ICP) monitoring for traumatic brain injury (TBI), subarachnoid haemorrhage (SAH), intracranial haemorrhage (ICH) or ischemic stroke (IS). Demographic data, GCS, SAPS II, hospital mortality, PaCO2 and ICP values were recorded. During CMV in the first 48 h after admission, we analyzed the time spent within the PaCO2 target in relation to the presence or absence of intracranial hypertension (ICP[20 mmHg, by periods of 30 min) (Table 1). We also compared the fraction of time (determined by linear interpolation) spent with normal, low or high PaCO2 in hospital survivors and non-survivors (Wilcoxon, Bonferroni correction, p\0.05) (Table 2). PaCO2 samples collected during and after apnoea tests were excluded. Results given as median [IQR]. RESULTS. 436 patients were included (TBI: 51.2 %, SAH: 20.6 %, ICH: 23.2 %, IS: 5.0 %), age: 54 [39-64], SAPS II score: 52 [41-62], GCS: 5 [3-8]. 8744 PaCO2 samples were collected during 150611 h of CMV. CONCLUSIONS. Despite a high number of PaCO2 samples collected (in average one sample every 107 min), our results show that patients undergoing CMV for neuro- resuscitation spent less than half of the time within the pre-defined PaCO2 range. During documented intracranial hypertension, hypercapnia was observed in 17.4 % of the time. Since non-survivors spent more time with hypocapnia, further analysis is required to determine whether hypocapnia was detrimental per se, or merely reflects increased severity of brain insult.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical behaviour of ectodermal cells in the area opaca and the supracellular organization of fibronectin in the adjacent extracellular matrix were studied in whole chick blastoderms developing in vitro. The pattern of spontaneous mechanical activity and its modification by immunoglobulins against fibronectin were determined using a real-time image-analysis system. The pattern of fibronectin was studied using immunocytochemical techniques. It was found that the ectodermal cells in the area opaca actively develop a radially oriented contraction, which leads to a distension of the area pellucida from which the embryo develops. Abnormally increased tension resulted in perturbations of gastrulation and neurulation. An optimized mechanical equilibrium within the blastoderm seems to be necessary for normal development. Anti-fibronectin antibodies applied to the basal side of the blastoderm led rapidly and reversibly to an increase of tension in the contracted cells. This observation indicates that modifications of the extracellular matrix can be transmitted to cytoskeletal elements within adjacent cells. The extracellular matrix of the area opaca contains fibronectin arranged in radially oriented fibrils. This orientation corresponds to the direction of migration of the mesodermal cells. Interestingly, the radial pattern of fibronectin is found in the regions where the ectodermal cells are contracted and develop radially oriented forces. This observation suggests that the supracellular assembly of the extracellular materials could be influenced by the mechanical activity of adjacent cells. Possible modulations of the supracellular organization of extracellular matrix by other factors, e.g. diffusible metabolites, is also discussed. The presence of characteristically organized extracellular matrix components, of spatially differentiated cell activities and of reciprocal interactions between them makes the young chick blastoderm an excellent system for physiological studies of the coordinated cellular activities that lead to changes in form, complexity and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a phenomenologically motivated magneto-mechanically coupled finite strain elastic framework for simulating the curing process of polymers in the presence of a magnetic load is proposed. This approach is in line with previous works by Hossain and co-workers on finite strain curing modelling framework for the purely mechanical polymer curing (Hossain et al., 2009b). The proposed thermodynamically consistent approach is independent of any particular free energy function that may be used for the fully-cured magneto-sensitive polymer modelling, i.e. any phenomenological or micromechanical-inspired free energy can be inserted into the main modelling framework. For the fabrication of magneto-sensitive polymers, micron-size ferromagnetic particles are mixed with the liquid matrix material in the uncured stage. The particles align in a preferred direction with the application of a magnetic field during the curing process. The polymer curing process is a complex (visco) elastic process that transforms a fluid to a solid with time. Such transformation process is modelled by an appropriate constitutive relation which takes into account the temporal evolution of the material parameters appearing in a particular energy function. For demonstration in this work, a frequently used energy function is chosen, i.e. the classical Mooney-Rivlin free energy enhanced by coupling terms. Several representative numerical examples are demonstrated that prove the capability of our approach to correctly capture common features in polymers undergoing curing processes in the presence of a magneto-mechanical coupled load.