127 resultados para MALE REPRODUCTIVE DEVELOPMENT
em Université de Lausanne, Switzerland
Resumo:
We studied for the first time the occurrence of multiple paternity, male reproductive success, and neonate survival in wild, low-density adder (Vipera berus) populations using 13 microsatellite loci. Paternity was assigned for 15 clutches, collected during 3 years. Our data demonstrated that multiple paternity can occur at a high level (69%) in natural populations of V. berus, even if the density of adults is low. The high proportion of multiple sired clutches was comparable to the proportion observed in captive populations. Male reproductive success significantly increased with body length, and only the largest males successfully sired entire clutches. Finally, no relationship was detected between the number of fathers per clutch and neonate survival. These results suggest that multiple matings could be beneficial in populations with high level of inbreeding or low male fecundity.
Resumo:
The relative number of workers and female sexuals fathered by two males mated with a queen were directly assessed using microsatellite and allozyme markers in field colonies of the ants Formica exsecta and F. truncorum. In both species one of the two males consistently fathered more offspring than the other. There was, however, no evidence that one male might be particularly successful in fathering a disproportionally high proportion of female sexuals relative to the proportion of workers. Moreover, in F. exsecta, the proportions of worker pupae and worker adults fathered by each male did not differ significantly between cohorts. The most likely explanation for this pattern is that females store different amounts of sperm from the two males they mated with.
Resumo:
BACKGROUND: The activity of the neuroendocrine reproductive axis is closely related to nutritional status. This link is particularly important in healthy women, in whom insulin is a positive signal for the reproductive system. In contrast, very little is known regarding this relation in men. OBJECTIVES: This study was designed to evaluate the effect of insulin on the reproductive axis of young male volunteers and to study the effect of short-term hypercaloric feeding on this modulation. DESIGN: The activity of the neuroendocrine reproductive axis was characterized by the pattern of endogenous luteinizing hormone (LH) secretion on the basis of frequent blood sampling protocols. The effect of insulin was tested by comparing the LH secretion pattern between a baseline study and a hyperinsulinemic euglycemic clamp. These studies were performed first in subjects fed a controlled isocaloric diet for 6 d (calculated as 1.5 times their resting metabolic rate) then in the same subjects fed a controlled hypercaloric diet in which 30% extra calories were provided as fat and fructose (3 g · kg(-1) · d(-1)) before undergoing identical protocols. Serum gonadotropins, sex steroids, glucose, insulin, ghrelin, and leptin concentrations were assessed, and the HOMA-IR was calculated. RESULTS: The LH secretion pattern was not affected by insulin or by hypercaloric feeding. Insulin decreased ghrelin and increased leptin concentrations but had no additional effect of hypercaloric feeding despite significantly lower HOMA-IR indexes. CONCLUSIONS: Our data indicate that neither insulin nor short-term hypercaloric feeding has any effect on the activity of the male reproductive axis. They also further support the association between ghrelin and insulin and glucose metabolism. This trial was registered at clinicaltrials.gov as NCT01058681.
Resumo:
Male dominance hierarchies are usually linked to relative body size and to weapon size, that is, to determinants of fighting ability. Secondary sexual characters that are not directly used as weapons could still be linked to dominance if they reveal determination or overall health and vigour and hence, indirectly, fighting ability. We studied the mating behaviour of the minnow, Phoxinus phoxinus, a cyprinid fish in which males develop breeding tubercles during the spawning season. The function of these breeding tubercles is still not clear. Using microsatellite markers, we determined male reproductive success under controlled conditions. The minnows were territorial and quickly established a dominance hierarchy at the beginning of the spawning season. Dominance was strongly and positively linked to fertilization success. Although body size and number of breeding tubercles were not significantly correlated in our sample, both large males and males with many breeding tubercles were more dominant and achieved higher fertilization success than small males or males with few tubercles. We found multimale fertilization in most clutches, suggesting that sperm competition is important in this species. Females showed behaviour that may be linked to spawning decision, that is, male dominance might not be the only determinant of male reproductive success in minnows
Resumo:
Soy and soy-based products are widely consumed by infants and adult individuals. There has been speculation that the presence of isoflavone phytoestrogens in soybean cause adverse effects on the development and function of the male reproductive system. The purpose of this study was to examine the influence of dietary soy and phytoestrogens on testicular and reproductive functions. Male mice were fed from conception to adulthood with either a high soy-containing diet or a soy-free diet. Although adult mice fed a soy-rich diet exhibited normal male behaviour and were fertile, we observed a reduced proportion of haploid germ cells in testes correlating with a 25% decrease in epididymal sperm counts and a 21% reduction in litter size. LH and androgens levels were not affected but transcripts coding for androgen-response genes in Sertoli cells and Gapd-s, a germ cell-specific gene involved in sperm glycolysis and mobility were significantly reduced. In addition, we found that dietary soy decreased the size of the seminal vesicle but without affecting its proteolytic activity. Taken together, these studies show that long-term exposure to dietary soy and phytoestrogens may affect male reproductive function resulting in a small decrease in sperm count and fertility.
Resumo:
Abstract In species with social hierarchies, the death of dominant individuals typically upheaves the social hierarchy and provides an opportunity for subordinate individuals to become reproductives. Such a phenomenon occurs in the monogyne form of the fire ant, Solenopsis invicta, where colonies typically contain a single wingless reproductive queen, thousands of workers and hundreds of winged nonreproductive virgin queens. Upon the death of the mother queen, many virgin queens shed their wings and initiate reproductive development instead of departing on a mating flight. Workers progressively execute almost all of them over the following weeks. To identify the molecular changes that occur in virgin queens as they perceive the loss of their mother queen and begin to compete for reproductive dominance, we collected virgin queens before the loss of their mother queen, 6 h after orphaning and 24 h after orphaning. Their RNA was extracted and hybridized against microarrays to examine the expression levels of approximately 10 000 genes. We identified 297 genes that were consistently differentially expressed after orphaning. These include genes that are putatively involved in the signalling and onset of reproductive development, as well as genes underlying major physiological changes in the young queens.
Resumo:
In insects, the steroid hormone 20-hydroxyecdysone (20E) coordinates major developmental transitions. While the first and the final steps of 20E biosynthesis are characterized, the pathway from 7-dehydrocholesterol to 5β-ketodiol, commonly referred as the "black box", remains hypothetical and whether there are still unidentified enzymes is unknown. The black box would include some oxidative steps, which are believed to be mediated by P450 enzymes. To identify new enzyme(s) involved in steroid synthesis, we analyzed by small-scale microarray the expression of all the genes encoding P450 enzymes of the malaria mosquito Anopheles gambiae in active steroidogenic organs of adults, ovaries from blood-fed females and male reproductive tracts, compared to inactive steroidogenic organs, ovaries from non-blood-fed females. Some genes encoding P450 enzymes were specifically overexpressed in female ovaries after a blood-meal or in male reproductive tracts but only three genes were found to be overexpressed in active steroidogenic organs of both females and males: cyp307a1, cyp4g16 and cyp6n1. Among these genes, only cyp307a1 has an expression pattern similar to other mosquito steroidogenic genes. Moreover, loss-of-function by transient RNAi targeting cyp307a1 disrupted ecdysteroid production demonstrating that this gene is required for ecdysteroid biosynthesis in Anopheles gambiae.
Resumo:
Differentiation of female sexual organs in flowering plants is rare and contrasts with the wide range of male reproductive strategies. An unusual example involves diplostigmaty, the possession of spatially and temporally distinct stigmas in Sebaea (Gentianaceae). Here, the single pistil within a flower has an apical stigma, as occurs in most flowering plants, but also a secondary stigma that occurs midway down the style, which is physically discrete and receptive several days after the apical stigma. We examined the function of diplostigmaty in Sebaea aurea, an insect-pollinated species of the Western Cape of South Africa. Floral manipulations and measurements of fertility and mating patterns provided evidence that basal stigmas function to enable autonomous delayed self-pollination, without limiting opportunities for outcrossing and thus avoiding the costs of seed discounting. We suggest that delayed selfing serves as a mechanism of reproductive assurance in populations with low plant density. The possession of dimorphic stigma function provides a novel example of a flexible mixed-mating strategy in plants that is responsive to changing demographic conditions.
Resumo:
In many insect societies, workers can manipulate the reproductive output of their colony by killing kin of lesser value to them. For instance, workers of the mound-building For mica exsecta eliminate male brood in colonies headed by a single-mated queen. By combining an inclusive fitness model and empirical data, we investigated the selective causes underlying these fratricides. Our model examines until which threshold stage in male brood development do the workers benefit from eliminating males to rear extra females instead. We then determined the minimal developmental stage reached by male larvae before elimination in F. exsecta field colonies. Surprisingly, many male larvae were kept until they were close to pupation, and only then eliminated. According to our model, part of the eliminated males were so large that workers would not benefit from replacing them with new females. Moreover, males were eliminated late in the season, so that new females could no longer be initiated, because matings take place synchronously during a short period. Together, these results indicate that workers did not replace male brood with new females, but rather reduced total brood size during late larval development. Male destruction was probably triggered by resource limitation, and the timing of brood elimination suggests that males may have been fed to females when these start to grow exponentially during the final larval stage. Hence, the evolution of fratricides in ants is best explained by a combination of ecological, demographic and genetic parameters.
Resumo:
Glucocorticoids affect physiology and behaviour, reproduction and potentially sexual selection as well. Shortterm and moderate glucocorticoid elevations are suggested to be adaptive, and prolonged and high elevations may be extremely harmful. This suggests that optimal reproductive strategies, and thus sexual selection, may be dose dependent. Here, we investigate effects of moderate and high elevations of blood corticosterone levels on intra- and intersexual behaviour and mating success of male common lizards Lacerta vivipara. Females showed less interest and more aggressive behaviour towards high corticosterone males and blood corticosterone levels affected male reproductive strategy. Males of moderate and high corticosterone elevations, compared with Control males, showed increased interest (i.e., higher number of chases, tongue extrusions, and approaches) towards females and high corticosterone males initiated more copulation attempts. However, neither increased male interest nor increased copulation attempts resulted in more copulations. This provides evidence for a best-of-a-bad-job strategy, where males with higher corticosterone levels compensated for reduced female interest and increased aggressive female behaviour directed towards them, by showing higher interest and by conducting more copulation attempts. Blood corticosterone levels affected intrasexual selection as well since moderate corticosterone levels positively affected male dominance, but dominance did not affect mating success. These findings underline the importance of female mate choice and are in line with adaptive compensatory behaviours of males. They further show that glucocorticoid effects on behaviour are dose dependent and that they have important implications for sexual selection and social interactions, and might potentially affect Darwinian fitness.
Resumo:
1. The gene Pgm-3 (or a closely linked gene) influences the phenotype and reproductive success of queens in multiple-queen (polygynous) colonies but not single-queen (monogynous) colonies of the Fire Ant Solenopsis invicta. 2. We investigated the mechanisms of differential phenotypic expression of Pgm-3 in these alternate social forms. Mature winged queens with the homozygous genotype Pgm-3(a/a) averaged 26% heavier than queens with the genotypes Pgm-3(a/b) and Pgm 3(b/b) in the polygynous form. Heterozygotes were slightly heavier (2%) than Pgm-3(b/b) queens in this form, demonstrating that the allele Pgm-3(a) is not completely recessive in its effects on weight. 3. There was no significant difference in weight among queens of the three Pgm-3 genotypes in the monogynous form, with the mean weight of monogynous queens slightly greater than that of polygynous Pgm-3(a/a) queens. Differences in weight between queens of the two social forms and among queens of the three genotypes in the polygynous form are not evident at the pupal stage and thus appear to develop during sexual maturation of the adults. This suggests that some component of the social environment of polygynous colonies inhibits weight gains during queen maturation and that Pgm-(3a/a) queens are relatively less sensitive to this factor. 4. To test whether the high cumulative queen pheromone level characteristic of polygynous colonies is the factor responsible for the differential queen maturation, we compared phenotypes of winged queens reared in split colonies in which pheromone levels were manipulated by adjusting queen number. Queens produced in colony fragments made monogynous were heavier than those produced in polygynous fragments, a finding consistent with the hypothesis that pheromone level affects the reproductive development of queens. However, genotype-specific differences in weights of queens were similar between the two treatments, suggesting that pheromone level was not the key factor of the social environment responsible for the gene-environment interaction. 5. To test whether limited food availability to winged queens associated with the high brood/worker ratios in polygynous colonies is the factor responsible for this interaction, similar split-colony experiments were performed. Elevated brood/worker ratios decreased the weight of winged queens but there was no evidence that this treatment intensified differential weight gains among queens with different Pgm-3 genotypes. Manipulation of the amount of food provided to colonies had no effect on queen weight. 6. The combined data indicate that cumulative pheromone level and brood/worker ratio are two of the factors responsible for the differences in reproductive phenotypes between monogynous and polygynous winged queens but that these factors are not directly responsible for inducing the phenotypic effects of Pgm-3 in polygynous colonies.
Resumo:
Odours of vertebrates often contain information about the major histocompatibility complex (MHC), and are used in kin recognition, mate choice or female investment in pregnancy. It is, however, still unclear whether MHC-linked signals can also affect male reproductive strategies. We used horses (Equus caballus) to study this question under experimental conditions. Twelve stallions were individually exposed either to an unfamiliar MHC-similar mare and then to an unfamiliar MHC-dissimilar mare, or vice versa. Each exposure lasted over a period of four weeks. Peripheral blood testosterone levels were determined weekly. Three ejaculates each were collected in the week after exposure to both mares (i.e. in the ninth week) to determine mean sperm number and sperm velocity. We found high testosterone levels when stallions were kept close to MHC-dissimilar mares and significantly lower ones when kept close to MHC-similar mares. Mean sperm number per ejaculate (but not sperm velocity) was positively correlated to mean testosterone levels and also affected by the order of presentation of mares: sperm numbers were higher if MHC-dissimilar mares were presented last than if MHC-similar mares were presented last. We conclude that MHC-linked signals influence testosterone secretion and semen characteristics, two indicators of male reproductive strategies.
Resumo:
The plant immune system relies to a great extent on the highly regulated expression of hundreds of defense genes encoding antimicrobial proteins, such as defensins, and antiherbivore proteins, such as lectins. The expression of many of these genes is controlled by a family of mediators known as jasmonates; these cyclic oxygenated fatty acid derivatives are reminiscent of prostaglandins. The roles of jasmonates also extend to the control of reproductive development. How are these complex events regulated? Nearly 20 members of the jasmonate family have been characterized. Some, like jasmonic acid, exist in unmodified forms, whereas others are conjugated to other lipids or to hydrophobic amino acids. Why do so many chemically different forms of these mediators exist, and do individual jasmonates have unique signaling properties or are they made to facilitate transport within and between cells? Key features of the jasmonate signal pathway have been identified and include the specific activation of E3-type ubiquitin ligases thought to target as-yet-undescribed transcriptional repressors for modification or destruction. Several classes of transcription factor are known to function in the jasmonate pathway, and, in some cases, these proteins provide nodes that integrate this network with other important defensive and developmental pathways. Progress in jasmonate research is now rapid, but large gaps in our knowledge exist. Aimed to keep pace with progress, the ensemble of jasmonate Connections Maps at the Signal Transduction Knowledge Environment describe (i) the canonical signaling pathway, (ii) the Arabidopsis signaling pathway, and (iii) the biogenesis and structures of the jasmonates themselves.
Resumo:
Context: GnRH deficiency is a rare genetic disorder of absent or partial pubertal development. The clinical and genetic characteristics of GnRH-deficient women have not been well-described. Objective: To determine the phenotypic and genotypic spectrum of a large series of GnRH-deficient women. Design, Setting, and Subjects: Retrospective study of 248 females with GnRH deficiency evaluated at an academic medical center between 1980 and 2010. Main Outcome Measures: Clinical presentation, baseline endogenous GnRH secretory activity, and DNA sequence variants in 11 genes associated with GnRH deficiency. Results: Eighty-eight percent had undergone pubarche, 51% had spontaneous thelarche, and 10% had 1-2 menses. Women with spontaneous thelarche were more likely to demonstrate normal pubarche (P = 0.04). In 27% of women, neuroendocrine studies demonstrated evidence of some endogenous GnRH secretory activity. Thirty-six percent (a large excess relative to controls) harbored a rare sequence variant in a gene associated with GnRH deficiency (87% heterozygous and 13% biallelic), with variants in FGFR1 (15%), GNRHR (6.6%), and PROKR2 (6.6%) being most prevalent. One woman had a biallelic variant in the X-linked gene, KAL1, and nine women had heterozygous variants. Conclusions: The clinical presentation of female GnRH deficiency varies from primary amenorrhea and absence of any secondary sexual characteristics to spontaneous breast development and occasional menses. In this cohort, rare sequence variants were present in all of the known genes associated with GnRH deficiency, including the novel identification of GnRH-deficient women with KAL1 variants. The pathogenic mechanism through which KAL1 variants disrupt female reproductive development requires further investigation.
Resumo:
Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.