2 resultados para M12
em Université de Lausanne, Switzerland
Resumo:
New anti-cancer agents are being developed that specifically recognise tumour cells. Recognition is dependent upon the enhanced expression of antigenic determinants on the surface of tumour cells. The tumour exposure and the extracellular accessibility of the mucin MUC-1 make this marker a suitable target for tumour diagnosis and therapy. We isolated and characterised six human scFv antibody fragments that bound to the MUC-1 core protein, by selecting a large naive human phage display library directly on a MUC-1-expressing breast carcinoma cell line. Their binding characteristics have been studied by ELISA, FACS and indirect immunofluorescence. The human scFv antibody fragments were specific for the tandem repeat region of MUC-1 and their binding is inhibited by soluble antigen. Four human scFv antibody fragments (M2, M3, M8, M12) recognised the hydrophilic PDTRP region of the MUC-1 core protein, which is thought to be an immunodominant region. The human scFv antibody fragments were stable in human serum at 37 degrees C and retained their binding specificity. For imaging or targeting to tumours over-expressing MUC-1, it might be feasible to use these human scFv, or multivalent derivatives, as vehicles to deliver anti-cancer agents.
Resumo:
Objectives: Sequencing and annotation of the genome of Aspergillus fumigatus has dramatically changed our knowledge about the proteins potentially encoded by the fungus. Own analysis have resulted in at least 47 of them contain a signal for secretion. Among those list we want to characterize those enzymes that may have impact on fungal growth outside and particularly inside the host. We thereby want to learn more about their function in general and to identify possible novel drug targets suited to combat invasive aspergillosis. Methods: Four groups of secreted proteases have been chosen for further analysis: 1 Serine-carboxyl proteases (sedolisins). Four of them were expressed in yeast and partly in bacteria. Substrate-specificity studies and kinetics as well as protein characterization of the yeast derived proteases were performed according to standard methods. Enzyme specific polyclonal antibodies were raised in rabbits using the peptides expressed in bacteria. Expression of proteases in A. fumigatus was investigated with these antibodies and gene knockout mutants for each enzyme as a control. All the following mentioned proteases will be investigated accordingly. 2 Two metalloproteases from the M12-family, ADAM-A and ADAM-B. Both proteases are likely membrane associated and may have inherent sheddase function as their counterparts in mammals. 3 One metalloprotease of the M43 family. An orthologue of this protease in Coccidioides posadasii is known to posses immunomodulating activities. 4 One putative endoprotease of the S28-family. An orthologue in Aspergillus niger is known to digest proline-rich proteins. In A. fumigatus this enzyme may facilitate invasion through proline-rich proteins like collagen. Results: All sedolisins expressed in yeast were proteolytically active: Three of them were characterized as tripeptidyl-peptidases whereas one enzyme is an endoprotease. Corresponding knockout mutants did not reveal a specific phenotype. Expression and investigations on all above mentioned proteases as well as generation of corresponding knockout mutants and double knockout mutants for the ADAMs, respectively, is underway. Promising candidates will be investigated in animal studies for reduced virulence. Conclusions : The real existence of so far hypothetical proteases predicted by the genome project was already demonstrated for the sedolisins by a reverse genetic approach (from gene to protein). With the aim of improving basic knowledge on function of other proteases potentially crucial for fungal growth and thus for pathogenesis, other hypothetical enzymes will be investigated. Those enzymes may turn out to be ideal drug targets for antimycotic chemotherapy.