171 resultados para Métabolisme

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La mesure de la fraction libre du magnésium circulant est désormais possible grâce aux électrodes sélectives. Lors d'une déplétion magnésique l'enquête étiologique est orientée par la comparaison de la magnésiurie et de la magnésémie. Les syndromes de Bortter, ou alcaloses hypokaliémiques d'origine rénale, sont des tubulopathies primitives définies par des signes simples: tension artérielle normale; alcalose hypokaliémiques; excrétion rénale conservée des chlorures et recherche de diurétiques négative dans les urines. Grâce à la mesure de la magnésémie et de la calciurie on distingue au moins deux alcaloses hypokaliémiques d'origine rénale, la maladie de Gitelman et le syndrome de Bartter au sens strict.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le retard de croissance intra-utérin (RCIU) est défini par une taille et un poids inférieurs au P10 pour l'âge gestationnel. Il est caractérisé, entre autre par une altération de la croissance foetale aboutissant à une résistance à l'hormone de croissance (HC). Bien que la majorité des sujets présente un certain rattrapage en taille, certains développent un retard de croissance ultérieur permanent. L'idée est donc née de traiter ces sujets par haute dose d'HC biosynthétique. La question des risques d'un tel traitement s'est posée en raison de l'effet diabétogène de l'HC et des modifications qu'elle peut induire sur la masse maigre, la masse grasse et la densité osseuse. Le but de l'étude a été d'évaluer l'impact sur la croissance et sur le volet métabolique. Dix enfants prépubères ayant présenté un RCIU sans croissance de rattrapage spontanée ont été traités par HC recombinante à des doses supra physiologiques (53-67 g/kg/jour). La taille, le poids, la taille assise ont été mesurés et des dosages d'IGF1, IGFBP3, glycémie et insuline ont été faits sur une base semestrielle alors qu'une densitométrie osseuse a été faite annuellement sur une période de 3 ans. Le gain en taille a été spectaculaire (+ 1.78 DS), correspondant à plus de 10 cm (p < 0.001). Sous traitement, l'insulinémie et le HOMA ont augmenté sans que ces augmentations soient significatives. La tolérance glucidique est restée dans la norme au prix d'une augmentation de la sécrétion d'insuline. La masse grasse a diminué alors que la masse maigre et la densité osseuse ont augmenté de façon significative. Ces résultats correspondent aux travaux d'autres groupes. Il reste à démontrer que l'hyperinsulinisme transitoire induit par l'HC n'ait pas d'effet néfaste à long terme et en particulier sur le risque de développer ou aggraver un syndrome métabolique à l'âge adulte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy metabolism in elderly subjects is discussed on the basis of previous analyses of the influence of age on the three components of energy expenditure in man: basal metabolic rate, thermogenesis and physical activity. All three components are diminished in elderly people. We conclude that the modifications of body composition, in particular the age-related loss of lean body mass, result in decreased basal metabolic rate and probably also a blunted diet-induced thermogenesis. Moreover we emphasize that the decrease in physical activity observed in elderly people is the most likely causal factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maternal and foetal anabolic phase characterizing pregnancy requires energy storage and hence a state of positive energy balance. Dietary surveys, however, have shown an increase in energy intake during pregnancy of small magnitude only. Furthermore, indirect calorimetry measurements indicate an elevation of basal or resting energy expenditure (EE), particularly during the 3rd trimester of pregnancy. These results are confirmed by measurements performed in a respiration chamber which showed that the rate of 24 hours EE of pregnant women is significantly more elevated in the 3rd trimester than in the nonpregnant state; the latter is explained by a rise of basal EE and to a smaller extent by an increase in energy cost of moving around as a result of the greater body weight. In contrast, when the results are expressed per unit body weight, the difference in 24 hours EE observed during pregnancy disappeared. It seems that energy sparing mechanisms-which are still largely unknown-may come into play during this period: postprandial thermogenesis appears to be blunted during pregnancy. This indicates an increase in net efficiency of food energy utilization. The degree of adaptation of physical activity-which has not been previously investigated-remains a research topic of great interest for the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contexte : Les patients souffrant d'un épisode dépressif sévère sont fréquemment traités par des inhibiteurs sélectifs de la recapture de la sérotonine (SSRI). Cependant, seulement 30-50% des patients répondront à ce type de traitement. Actuellement, il n'existe pas de marqueur biologique utilisable pour prédire la réponse à un traitement par SSRI. Un délai dans la mise en place d'une thérapie efficace peut avoir comme conséquences néfastes une augmentation du risque de suicide et une association avec un moins bon pronostic à long terme lors d'épisodes ultérieurs. Objectif : Par l'étude du métabolisme cérébral par tomographie par émission de positons (PET) au F-18-fluorodeoxyglucose (FDG), nous étudierons la présence de corrélations éventuelles entre la réponse clinique, qui généralement survient dans les 4 à 6 semaines après l'instauration du traitement antidépresseur, et une modification du métabolisme cérébral mesuré plus précocement, dans le but d'identifier les futurs répondeurs au traitement par SSRI. Méthodes : Cette étude longitudinale comprendra 20 patients unipolaires avec un épisode dépressif sévère au bénéfice d'un traitement par SSRI. Chacun des patients aura deux examens PET cérébraux au F-18-FDG. Le premier PET aura lieu juste avant le début du traitement aux SSRI et le second dans la 3ème semaine après début du traitement. La réponse clinique sera mesurée à 3 mois, et les répondeurs seront identifiés par une diminution significative des scores lors d'évaluation sur échelles de dépression. La recherche d'altérations métaboliques cérébrales sera faite en évaluant: (1) l'examen de base ou (2) l'examen PET précoce, à la recherche d'altérations spécifiques corrélées à une bonne réponse clinique, afin d'obtenir une valeur pronostique quant à la réponse au traitement. L'analyse de l'imagerie cérébrale utilisera la technique SPM (Statistical Parameter Mapping) impliquant un traitement numérique voxel par voxel des images PET. Résultats escomptés : Cette étude caractérisant les variations du métabolisme cérébral dans la phase précoce d'un traitement par SSRI vise à identifier des marqueurs métaboliques potentiels fournissant une valeur prédictive quant à la future efficacité du traitement SSRI introduit. Plus-value escomptée : L'identification d'un tel marqueur métabolique permettrait d'identifier rapidement les futurs répondeurs aux SSRI, et par conséquent d'éviter de proposer aux non-répondeurs la poursuite d'une médication, pendant plusieurs semaines, qui aurait peu de chance d'être efficace. Ainsi, une identification précoce des répondeurs aux SSRI pourrait permettre d'éviter des délais dans la mise en place d'une thérapie efficace et d'obtenir une amélioration du pronostic à plus long terme, avec une influence favorable sur les coûts de la santé.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe head injury induces major hormonal, humoral and metabolic changes, characterized by increases in stress hormone secretion, lymphokines production, associated with high lipid and protein catabolism as well as changes in energy expenditure (EE). Numerous factors influence EE in head-injured patients, particularly anthropometric data, body temperature, nutritional support, level of consciousness, muscular tone and activity. Resting EE is usually increased following brain trauma; however, normal or decreased metabolic rates can be observed in curarized patients on mechanical ventilation or in patients receiving high doses of barbiturates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signals detected with functional brain imaging techniques are based on the coupling of neuronal activity with energy metabolism. Techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) allow the visualization of brain areas that are activated by a variety of sensory, motor or cognitive tasks. Despite the technological sophistication of these brain imaging techniques, the precise mechanisms and cell types involved in coupling and in generating metabolic signals are still debated. Recent experimental data on the cellular and molecular mechanisms that underlie the fluorodeoxyglucose (FDG) - based PET imaging point to a critical role of a particular brain cell type, the astrocytes, in coupling neuronal activity to glucose utilization. Indeed, astrocytes possess receptors and re-uptake sites for a variety of neurotransmitters, including glutamate, the predominant excitatory neurotransmitter in the brain, In addition, astrocytic end-feet, which surround capillaries, are enriched in the specific glucose transporter GLUT-1. These features allow astrocytes to "sense" synaptic activity and to couple it with energy metabolism. In vivo and in vitro data support the following functional model: in response to glutamate released by active neurons, glucose is predominantly taken up by astrocytic end-feet; glucose is then metabolized to lactate which provides a preferred energy substrate for neurons. These data support the notion that astrocytes markedly contribute to the FDG-PET signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME GENERAL Au cours de ces dernières années, le monoxyde d'azote (NO) produit par une famille d'enzymes, les NO synthases (NOS), est apparu comme un effecteur central dans la régulation du système cardiovasculaire et du métabolisme énergétique. Chez l'homme, un défaut de production du NO est associé à des maladies cardiovasculaires et métaboliques comme la résistance à l'insuline ou le diabète de type 2. Ces pathologies se retrouvent chez les souris invalidées pour la NO synthase endothéliale (eN0S-/-) qui présentent non seulement une hypertension mais également une résistance à l'insuline et une dyslipidémie (augmentation des triglycérides et des acides gras libres). Ces anomalies sont étroitement associées et impliquées dans le développement du diabète de type 2. Dans cette étude, nous avons essayé de déterminer à partir du modèle de souris eN0S-/-, l'influence de la eNOS et de son produit, le NO, sur la régulation du métabolisme lipidique intracellulaire. Ainsi, nous avons montré que cette enzyme et le NO régulent directement l'activité β-oxydative des mitochondries isolées du muscle squelettique, du muscle cardiaque et du tissu adipeux blanc. Par ailleurs, dans le muscle de ces souris, le contenu des mitochondries et l'expression des gènes impliqués dans leur biogénèse sont diminués, ce qui suggère que la eNOS et/ou le NO contrôlent également la synthèse de ces organelles. Les mitochondries, via la β-oxydation, sont impliquées dans la production d'énergie à partir des acides gras libres. Dans notre modèle animal, la diminution de la β-oxydation dans le muscle, s'accompagne d'une accumulation des triglycérides intramyocellulaires. Cette accumulation prédispose fortement au développement de la résistance à l'insuline. Les anomalies du métabolisme β-oxydatif favorisent donc probablement l'apparition de la dyslipidémie et le développement de la résistance à l'insuline observées chez les souris eN0S-/-. Cette hypothèse est soutenue par différentes études effectuées chez l'homme et l'animal qui suggèrent qu'une dysfonction mitochondriale peut être à l'origine de la résistance à l'insuline. Ces données récentes et les résultats de ce travail apportent un regard nouveau sur le rôle du NO dans le développement des maladies métaboliques que sont la résistance à l'insuline, le diabète de type 2 et l'obésité. Elles placent aux centres de ces mécanismes une organelle, la mitochondrie, située au carrefour des métabolismes glucidiques et lipidiques. SUMMARY Over the last years, nitric oxide (NO), synthesized by a family of enzymes, the NO synthases, has become a central regulator of the cardiovascular system and energy metabolism. In humans, defective NO production is found in cardiovascular and metabolic diseases such as insulin resistance or type 2 diabetes mellitus. These alterations are also found in knockout mice for the endothelial nitric oxide synthase (eN0S-/-), which are not only hypertensive but also display insulin resistance and dyslipidemia (with increased triglyceride and free fatty acid levels). These pathologic features are tightly linked and involved in the pathogenesis of type 2 DM. In this study, using eN0S-/- mice, we determined the role played by this enzyme and its product, NO, on intracellular lipid metabolism. We show that eNOS and NO directly regulate β-oxidation in mitochondria isolated from skeletal and cardiac muscle as well as white adipose tissue. Furthermore, in the skeletal muscle of these mice, the mitochondrial content and the expression of genes involved in mitochondrial biogenesis are decreased, suggesting that eNOS and/or NO also regulate the synthesis of this intracellular organelle. Mitochondria, through β-oxidation, play a role in energy production from free fatty acids. In our animal model, decreased β-oxidation in skeletal muscle is associated with accumulation of intramyocellular lipids. This increased lipid content plays an important role in the pathogenesis of insulin resistance. Defective β-oxidation, therefore, probably favours the development of insulin resistance and dyslipidemia as seen in these animals. This hypothesis is strengthened by studies in humans and animals indicating that mitochondrial dysfunction is associated with insulin resistance. These recent data and the results of this work provide evidence for a role of NO in the development of metabolic diseases such as insulin resistance or type diabetes mellitus. They put as a central player, an organelle, the mitochondria, which lies at the crossway of carbohydrate and lipid metabolism. RESUME DIDACTIQUE Le maintien des fonctions vitales et l'accomplissement d'une activité physique nécessitent, chez l'homme, un apport quotidien d'énergie. Cette énergie est présente, dans l'alimentation, principalement sous forme de graisses (lipides) ou de sucres. La production d'énergie s'effectue en majorité dans le muscle au niveau d'une organelle particulière, la mitochondrie. La régulation du métabolisme énergétique fait intervenir de nombreux facteurs de régulation dont l'un des plus connu est l'insuline. De nombreuses maladies comme le diabète de type 2, l'obésité ou le syndrome métabolique découlent de la dérégulation du métabolisme énergétique. Un mécanisme particulier, la résistance à l'insuline, qui se caractérise par un défaut d'action de l'insuline au niveau de ses tissus cibles (foie, muscle...) est souvent impliqué dans le développement de ces pathologies. L'étude de ces anomalies métaboliques nécessite l'utilisation de modèles, notamment animaux, qui ont la particularité de reproduire partiellement un état pathologique caractéristique de certaines maladies humaines. Dans ce travail, nous avons utilisé un modèle de souris dont la particularité est de ne pas exprimer une enzyme, la monoxyde d'azote (NO) synthase endothéliale (eNOS), responsable de la synthèse d'un gaz, le NO. Ces souris présentent une hypertension artérielle, des anomalies du métabolisme des lipides et une résistance à l'insuline. Or, de récents travaux effectués chez l'homme montrent que des individus insulino-résistants ou diabétiques de type 2 ont une diminution de la production de NO. Lors de nos investigations, nous avons démontré que la quantité et la capacité des mitochondries à utiliser les lipides comme substrat énergétique est diminuée dans les muscles des souris eN0S-/-. Par ailleurs, ces deux anomalies sont associées dans ce tissu à une accumulation des lipides. De façon très intéressante, ce phénomène est décrit dans de nombreuses études effectuées chez l'homme et l'animal comme favorisant le développement de la résistance à l'insuline. Les résultats de ce travail suggèrent donc que la eNOS et/ou le NO joue un rôle important dans l'activité et la synthèse des mitochondries. Le NO pourrait donc constituer une cible thérapeutique dans le traitement des maladies métaboliques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contexte : La stimulation du nerf vague est une technique neurochirurgicale qui consiste en l'implantation d'une électrode envoyant des impulsions autours de celui-ci. Depuis l'approbation de la FDA en 1997 aux Etats-Unis, elle est utilisée chez certains patients épileptiques pharmaco-résistants et dont la chirurgie classique n'est pas envisageable [1], Par exemple lorsque qu'aucun foyer épileptique n'est identifiable, qu'une zone éloquente du cortex est atteinte ou encore qu'il y a de multiples points de départ. On parle généralement de patient « répondeur » lorsqu'une diminution de plus de 50% des crises est observée après l'opération. La proportion de patients répondeurs est estimée entre 20 à 50% [2], avec une action positive sur l'éveil [3]. Le mécanisme d'action de cette thérapie reste largement inconnu même si quelques ébauches d'hypothèses ont été formulées, notamment une action inhibitrice sur le noyau solitaire du nerf vague qui pourrait avoir comme effet de moduler des projections ascendantes diffuses via le locus coeruleus [3, 4]. Objectifs : Le but de ce travail est d'observer les effets de la stimulation du nerf vague sur le métabolisme cérébral et potentiellement d'élaborer des hypothèses sur le mécanisme d'action de ce traitement. Il faudra plus précisément s'intéresser au tronc cérébral, contenant le locus coeruleus (métabolisme de la noradrénaline) et aux noyaux du raphé (métabolisme de la sérotonine), deux neurotransmetteurs avec effet antiépileptique [5]. Le but sera également d'établir des facteurs prédictifs sur la façon de répondre d'un patient à partir d'une imagerie cérébrale fonctionnelle avant implantation, notamment au niveau du métabolisme cortical, particulièrement frontal (éveil) sera intéressant à étudier. Méthodes : Un formulaire d'information ainsi que de consentement éclairé sera remis à chaque patient avant inclusion dans l'étude. Les informations de chaque patient seront également inscrites dans un cahier d'observation (Case Report Form, CRF). Le travail s'organisera essentiellement sur deux populations. Premièrement, chez les patients déjà opérés avec un stimulateur en marche, nous réaliserons qu'une imagerie PET au F-18-fluorodeoxyglucose (FDG) post-opératoire qui seront comparés à une base de données de patients normaux (collaboration Dr E. Guedj, AP-HM, La Timone, Marseille). Nous confronterons également les images de ces patients entre elles, en opposant les répondeurs (diminution des crises de ≥50%) aux non-répondeurs. Deuxièmement, les patients non encore opérés auront un examen PET basal avant implantation et 3-6 mois après la mise en marche du stimulateur. Nous évaluerons alors les éventuelles modifications entre ces deux imageries PET, à la recherche de différences entre les répondeurs et non-répondeurs, ainsi que de facteurs prédictifs de bonne réponse dans l'imagerie de base. Toutes les comparaisons d'images seront effectuées grâce avec le programme d'analyse SPM08. Résultats escomptés : Nous espérons pouvoir mettre en évidence des modifications du métabolisme cérébral au FDG sur la base de ces différentes images. Ces constatations pourraient nous permettre de confirmer ou d'élargir les hypothèses physiologiques quant aux effets du traitement par stimulation vagale. Nous aimerions, de plus, amener à définir des facteurs prédictifs sur la façon de répondre d'un patient au traitement à l'aide du PET au F-18-FDG de départ avant implantation. Plus value escomptée : Ces résultats pourront donner des pistes supplémentaires quant au fonctionnement de la stimulation vagale chez les patients avec épilepsie réfractaire et servir de base à de nouvelles recherches dans ce domaine. Ils pourraient aussi donner des éléments pronostics avant l'implantation pour aider la sélection des patients pouvant bénéficier de ce type de thérapie.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME Il a longtemps été admis que le glucose était le principal, sinon le seul substrat du métabolisme énergétique cérébral. Néanmoins, des études récentes indiquent que dans des situations particulières, d'autres substrats peuvent être employés. C'est le cas des monocarboxylates (lactate et pyruvate principalement). Bien que la barrière hématoencéphalique soit peu perméable à ces molécules, elles deviennent néanmoins des substrats possibles si elles sont produites localement. Les deux systèmes enzymatiques pivots des voies glycolytiques et oxydatives sont la lactate déshydrogénase (LDH, EC 1.1.1.27) qui catalyse l'interconversion du pyruvate et du lactate et le complexe pyruvate déshydrogénase qui catalyse la conversion irréversible du pyruvate en acétyl-CoA qui entre dans la respiration mitochondriale. Nous avons étudié la localisation, tant régionale que cellulaire, des isoformes LDH-1, LDH-5 et PDHEla dans le cerveau du chat et dé l'homme au moyen de diverses techniques histologiques. Dans un premier temps, des investigations par hybridation in situ au moyen d'oligosondes marquées au 33P sur de coupes de cerveau de chat ont permis de montrer une différence de l'expression des enzymes à vocation oxydative (LDH-1 et PDHA1, le gène codant pour la protéine PDHEIa) par rapport à LDH-5, isoforme qui catalyse préférentiellement la formation de lactate. LDH-1 et PDHA 1 ont des distributions similaires et sont enrichies dans de nombreuses structures cérébrales, comme l'hippocampe, de nombreux noyaux thalamiques et des structures pontiques. Le cortex cérébral exhibe également une expression importante de LDH-1 et PDH. LDH-5 a par contre une expression largement plus diffuse à travers le cerveau, bien que l'on trouve néanmoins un enrichissement plus important dans l'hippocampe. Ces résultats sont en accord avec les observations que nous avons précédemment publiées chez le rongeur pour LDH-1 et LDH-5 (Laughton et collaborateurs, 2000). Des analyses par PCR en temps réel ont confirmé que dans certaines régions, LDH-1 est exprimée de façon nettement plus importante que LDH-5. Dans un deuxième temps, nous avons appliqué sur des coupes histologiques d'hippocampe et de cortex occipital humain post-mortem des anticorps monoclonaux spécifiques de l'isoforme LDH-5 et la sous-unité PDHela du complexe pyruvate déshydrogénase. Là aussi, les immunoréactions révèlent une ségrégation régionale mais aussi cellulaire des deux enzymes. Dans les deux régions étudiées, LDH-5 est localisée exclusivement dans les astrocytes. Dans le cortex occipital, la matière blanche et également la couche I corticale sont immunopositives pour LDH-5. Dans l'hippocampe, le CA4 et l'alveus exhibe l'immunomarquage le plus intense pour LDH-5. Seuls des neurones (à de rares exceptions quelques astrocytes) sont immunopositifs à l'anticorps monoclonal dirigé contre PDHela. La couche IV du cortex occipital présente la plus forte immunoréaction. Dans l'hippocampe, une immunoréactivité est observée dans le stratum granulosum et à travers la région CA1 jusqu'à la région CA3. L'ensemble de ces résultats montre une hétérogénéité métabolique dans le cerveau et étaye l'hypothèse "astrocyte-neurone lactate shuttle" (ANL5) (Bittar et collaborateurs, 1996; Magistretti et Pellerin, 1999) qui propose que les astrocytes fournissent aux neurones activés du lactate comme substrat alternatif de leur métabolisme énergétique. ABSTRACT For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally. The two key enzymatic systems required for the use and production of these substats are lactate dehydrogenase (LDH; EC 1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA cycle and oxydative phosphorylation. Our study consisted in localizing these different systems with various histochemical procedures in the cat brain and two regions, i.e. hippocampus and primary visual cortex, of the human brain. First, by means of in situ hybridization with 33P labeled oligoprobes, we have demonstrated that the more oxidative enzymes (LDH-1 and PDHA1, the gene coding for PDHEla) are highly expressed in a variety of feline brain structures. These structures include the hippocampus, various thalamic nuclei and the pons. The cerebral cortex exhibits also a high LDH-1 and PDHAl expression. On the other hand, LDH-5 expression is poorer and more diffuse, although the hippocampus does seem to have a higher expression. These fmdings are consistent with our previous observation of the expression of LDH1 and LDH-5 in the rodent brain (Laughton et al, 2000). Real-time PCR (TagMan tm) revealed that, in various regions, LDH-1 is effectively more highly expressed than LDH-5. In a second set of experiments, monoclonal antibodies to LDH-5 and PDHeIa were applied to cryostat sections of post-mortem human hippocampus and occipital cortex. These procedures revealed not only that the two enzymes have different regional distributions, but also distinct cellular localisation. LDH-5 immunoreactivity is solely observed in astrocytes. In the occipital cortex, the white matter and layer I are immunopositive. In the hippocampus, the alveus and CA4 show LDH-5 immunoréactivity. PDHeIa has been detected, with few exceptions, only in neurons. Layer IV of the occipital cortex was most immmunoreactive. In the hippocampus, PDHela immunoreactivity is noticed in the stratum granulosum and through CA 1 to CA3 areas. The overall observations made in this study show that there is a metabolic heterogeneity in the brain and our findings support the hypothesis of an astrocyte-neuron lactate shuttle (ANLS)(Bittar et al., 1996; Magistretti & Pellerin, 1999) where astrocytes export to active neurons lactate to fuel their energy demands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé large public: Une altération localisée du métabolisme du glucose, le substrat énergétique préférentiellement utilisé dans le cerveau, est un trait caractéristique précoce de la maladie d'Alzheimer (MA). Il est maintenant largement admis que le beta-amyloïde, la neuroinflammation et le stress oxydatif participent au développement de la MA. Cependant les mécanismes cellulaires de la pathogenèse restent à identifier. Le métabolisme cérébral a ceci de remarquable qu'il repose sur la coopération entre deux types cellulaires, ainsi les astrocytes et les neurones constituent une unité métabolique. Les astrocytes sont notamment responsables de fournir aux neurones des substrats énergétiques, ainsi que des précurseurs du glutathion pour la défense contre le stress oxydatif. Ces fonctions astrocytaires sont essentielles au bon fonctionnement et à la survie neuronale; par conséquent, une altération de ces fonctions astrocytaires pourrait participer au développement de certaines maladies cérébrales. Le but de ce travail est, dans un premier temps, d'explorer les effets de médiateurs de la neuroinflammation (les cytokines pro-inflammatoires) et du peptide beta-amyloïde sur le métabolisme des astrocytes corticaux, en se focalisant sur les éléments en lien avec le métabolisme énergétique et le stress oxydatif. Puis, dans un second temps, de caractériser les conséquences pour les neurones des modifications du métabolisme astrocytaire induites par ces substances. Les résultats obtenus ici montrent que les cytokines pro-inflammatoires et le beta-amyloïde induisent une profonde altération du métabolisme astrocytaire, selon deux profils distincts. Les cytokines pro-inflammatoires, particulièrement en combinaison, agissent comme « découpleurs » du métabolisme énergétique du glucose, en diminuant l'apport potentiel de substrats énergétiques aux neurones. En plus de son effet propre, le peptide beta-amyloïde potentialise les effets des cytokines pro-inflammatoires. Or, dans le cerveau de patients atteints de la MA, les astrocytes sont exposés simultanément à ces deux types de substances. Les deux types de substances ont un effet ambivalent en termes de stress oxydatif. Ils induisent à la fois une augmentation de la libération de glutathion (potentiellement protecteur pour les neurones voisins) et la production d'espèces réactives de l'oxygène (potentiellement toxiques). Etant donné l'importance de la coopération entre astrocytes et neurones, ces modulations du métabolisme astrocytaire pourraient donc avoir un retentissement majeur sur les cellules environnantes, et en particulier sur la fonction et la survie neuronale. Résumé Les astrocytes et les neurones constituent une unité métabolique. Les astrocytes sont notamment responsables de fournir aux neurones des substrats énergétiques, tels que le lactate, ainsi que des précurseurs du glutathion pour la défense contre le stress oxydatif. Une altération localisée du métabolisme du glucose, le substrat énergétique préférentiellement utilisé dans le cerveau, est un trait caractéristique, précoce, de la maladie d'Alzheimer (MA). Il est maintenant largement admis que le beta-amyloïde, la neuroinflammation et le stress oxydatif participent au développement de la MA. Cependant, les mécanismes cellulaires de la pathogenèse restent à identifier. Le but de ce travail est d'explorer les effets des cytokines pro-inflammatoires (Il-1 ß et TNFα) et du beta-amyloïde (Aß) sur le métabolisme du glucose des astrocytes corticaux en culture primaire ainsi que de caractériser les conséquences, pour la viabilité des neurones voisins, des modifications du métabolisme astrocytaire induites par ces substances. Les résultats obtenus montrent que les cytokines pro-inflammatoires et le beta-amyloïde induisent une profonde altération du métabolisme astrocytaire, selon deux profils distincts. Les cytokines pro-inflammatoires, particulièrement en combinaison, agissent comme « découpleurs » du métabolisme glycolytique astrocytaire. Après 48 heures, le traitement avec TNFα et Il-lß cause une augmentation de la capture de glucose et de son métabolisme dans la voie des pentoses phosphates et dans le cycle de Krebs. A l'inverse, il cause une diminution de la libération de lactate et des stocks cellulaires de glycogène. En combinaison avec les cytokines tel qu'in vivo dans les cerveaux de patients atteints de MA, le peptide betaamyloïde potentialise les effets décrits ci-dessus. Isolément, le Aß cause une augmentation coordonnée de la capture de glucose et de toutes les voies de son métabolisme (libération de lactate, glycogenèse, voie des pentoses phosphate et cycle de Krebs). Les traitements altèrent peu les taux de glutathion intracellulaires, par contre ils augmentent massivement la libération de glutathion dans le milieu extracellulaire. A l'inverse, les deux types de traitements augmentent la production intracellulaire d'espèces réactives de l'oxygène (ROS). De plus, les cytokines pro-inflammatoires en combinaison augmentent massivement la production des ROS dans l'espace extracellulaire. Afin de caractériser l'impact de ces altérations métaboliques sur la viabilité des neurones environnants, un modèle de co-culture et des milieux conditionnés astrocytaires ont été utilisés. Les résultats montrent qu'en l'absence d'une source exogène d'antioxydants, la présence d'astrocytes favorise la viabilité neuronale ainsi que leur défense contre le stress oxydatif. Cette propriété n'est cependant pas modulée par les différents traitements. D'autre part, la présence d'astrocytes, et non de milieu conditionné, protège les neurones contre l'excitotoxicité due au glutamate. Les astrocytes prétraités (aussi bien avec le beta-amyloïde qu'avec les cytokines pro-inflammatoires) perdent cette propriété. Cet élément suggère que la perturbation du métabolisme astrocytaire causé par les cytokines pro-inflammatoires ou le beta-amyloïde pourrait participer à l'atteinte de la viabilité neuronale associée à certaines pathologies neurodégénératives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME : Les aquaporines (AQPs) sont des protéines membranaires perméables à l'eau (aquaporines strictes) et, pour certaines d'entre elles, également au glycérol (aquaglycéroporines). Ces protéines sont présentes dans les bactéries, les plantes et les différents organes des mammifères. Dans le cerveau, la moindre augmentation de volume hydrique peut avoir de graves conséquences sur son fonctionnement, d'où l'importance de la régulation de l'homéostasie de l'eau grâce aux AQPs. L'AQP4, une aquaporine stricte, est présente dans les astrocytes et est impliquée dans la formation et la résorption des oedèmes cérébraux. En revanche, l'AQP9 est une aquaglycéroporine, qui est localisée non seulement dans les astrocytes mais également dans les neurones catécholaminergiques. Bien que la distribution de l'AQP4 dans le cerveau soit clairement établie, la présence de l'AQP9 est toujours une donnée controversée et son rôle fonctionnel dans le système nerveux central n'est pas connu. Par ailleurs, aucune donnée n'existe sur l'expression des AQP4 et 9 lors de la différenciation de cellules souches neurales foetales (CSNf) en astrocytes ou en neurones catécholaminergiques. Dans la première partie de ce travail, un protocole a été mis au point permettant de différencier des CSNf de souris en astrocytes et neurones, dont des neurones catécholaminergiques. La caractérisation des cultures de CSNf et des cultures mixtes par immunofluorescence a permis de montrer que l'immunomarquage AQP9 est présent dans les CSNf et est conservé lors de leur différenciation en astrocytes ou en neurones catécholaminergiques. Les résultats obtenus ont mis en évidence une très bonne corrélation entre l'expression de la TH (tyrosine hydroxylase: enzyme limitante de la synthèse des catécholamines) et celle de l'AQP9 lors de la différenciation des CSNf en neurones catécholaminergiques. Par contre, l'immunomarquage AQP4 n'est pas présent dans les CSNf alors qu'il est observé dans les astrocytes. De plus, aucun immunomarquage AQP4 ou AQP9 n'a été observé dans les neurones NIAP2-positifs. Dans la deuxième partie de ce travail, l'expression des AQP4 et 9 a été quantifiée dans les CSNf ainsi que dans trois populations d'astrocytes présentant des propriétés métaboliques différentes. Ces trois populations astrocytaires sont issues de la différenciation des CSNf par le CNTF, le LIF ou le sérum de veau foetal. Les analyses par RTPCR quantitative et western blot ont montré une augmentation de l'expression de l'AQP9 et de l'AQP4 corrélée à l'acquisition de propriétés métaboliques spécifiques des astrocytes matures. Dans la dernière partie, la technique d'ARN interférents a permis d'étudier le rôle fonctionnel de l'AQP9 dans le modèle de culture pure d'astrocytes différenciés par le sérum. L'inhibition de l'expression d'AQP9 entraîne une diminution de la perméabilité au glycérol et une augmentation de l'utilisation de glucose, corrélée à une stimulation du métabolisme oxydatif astrocytaire. En revanche, 1a baisse d'expression d'AQP9 n'a aucun effet sur la glycolyse anaérobie ni sur la libération du lactate. En conclusion, dans ce modèle in vitro, seule l'AQP9 est exprimée dans les CSNf et les neurones catécholaminergiques alors que dans Ies astrocytes, à la fois l'AQP9 et l'AQP4 sont exprimées. Cette distribution est identique à celle observée in vivo et confirme la localisation spécifique de l'AQP9 dans les neurones catécholaminergiques. De plus, ces résultats montrent, pour la première fois, l'implication de l'AQP9 dans la perméabilité des astrocytes au glycérol et son implication dans le métabolisme énergétique astrocytaire. ABSTACT : Aquaporins (AQPs) are membrane proteins permeable to water (orthodoxes aquaporins) and some of them are also permeable to glycerol (aquaglyceroporins). These proteins are widely expressed in bacteria, plants and mammals. AQP water homeostasis regulation in brain is of primary importance as the brain volume cannot increase. AQP4, an orthodoxe aquaporin, is present in astrocytes and seems to be involved in edema formation and resorption. On the other hand, AQP9 is an aquaglyceroporin which is localised not only in astrocytes but also in catecholaminergic neurons. Although AQP4 distribution in brain is clearly established, the presence of AQP9 is still a discussed data and its functional role in the central nervous system is unknown. In addition, no data exists on AQP4 or AQP9 expression during fetal neural stem cells (fNSC) differentiation into astrocytes or catecholaminergic neurons. In the first part of this work, a protocol was developed to differentiate mouse fNSC into astrocytes and neurons, with the aim to obtain catecholaminergic neurons. By immunefluorescence, we have shown that AQP9 is expressed in fNSC cultures and also in astrocytes and catecholaminergic neurons in mixt cultures. The results obtained highlighted a very good correlation between TH expression (tyrosin hydroxylase being a limiting enzyme of catecholamines synthesis) and AQP9 in fNSC and all along their differentiation into catecholaminergic neurons. On the other hand, AQP4 immunolabelling is not observed in fNSC whereas it is in astrocytes. Moreover, neitheir AQP4, nor AQP9 immunoreactivity was observed in MAP2-positive neurons. In the second part of this work, AQP4 and AQP9 expression was quantified in fNSC and in three populations of astrocytes presenting different metabolic properties. These three astrocyte populations result from fNSC differentiation by addition of CNTF, LIF or fetal calf serum. Quantitative RT-PCR and western blot analyses have shown an increase in both AQP4 and AQP9 expression, correlated with the acquisition of specific metabolic properties of mature astrocytes. In the last part, siRNA were used to study the functional role of AQP9 in the pure astrocyte culture model differentiated by addition of fetal calf serum. Inhibition of AQP9 expression leads to a decrease of glycerol uptake and to an increase of glucose uptake, correlated with a stimulation of the astrocyte oxydative metabolism. On the other hand, inhibition of AQP9 expression does not have any effect on anaerobic glycolysis nor on lactate release. In conclusion, in this in vitro model, only AQP9 is expressed in fNSC and in catecholaminergic neurons whereas in astrocytes, both AQP9 and AQP4 are expressed. This distribution is identical to that observed in vivo and confirms the specific AQP9 localization in catecholaminergic neurons. IVloreover, these results show, for the first time, that AQP9 is implicated in glycerol uptake and in astrocyte energetic metabolism. Résumé large public : Les aquaporines, des protéines localisées dans les membranes cellulaires sont, comme leur nom l'indique, des canaux à eau. Pendant longtemps, il a été considéré que l'eau diffusait librement dans et à travers les cellules; la caractérisation des AQPs a révolutionné la vision des scientifiques concernant les mouvements d'eau entre les différents compartiments infra et extracellulaires, et a d'ailleurs valu le Prix Nobel à Peter Agre en 1992. Certaines AQPs, dites "strictes", laissent passer uniquement l'eau et participent au contrôle du volume hydrique. Ce contrôle est particulièrement important pour le bon fonctionnement du cerveau en raison de la présence de la boîte crânienne qui limite les variations de volume. D'autres AQPs, les aquaglycéroporines, sont perméables non seulement à l'eau mais également à d'autres molécules comme le glycérol. Elles facilitent, par exemple, la sortie du glycérol des cellules graisseuses et sa capture par les cellules du foie afin de produire du glucose en période de jeûne. Le cerveau est principalement composé de deux types de cellules: les neurones et les cellules gliales, majoritairement des astrocytes. L'AQP4, une AQP stricte, est présente dans les astrocytes et joue un rôle dans la formation et la résorption des oedèmes cérébraux. L'AQP9, une aquaglycéroporine, est également présente dans les astrocytes et dans une population spécifique de neurones, les neurones catécholaminergiques, touchés dans la maladie de Parkinson. A ce jour, la présence de l'AQP9 dans le cerveau est une donnée controversée et son rôle fonctionnel est inconnu. Ce travail de thèse a permis de montrer que l'AQP9 est bien présente d'une part dans les cellules souches neurales foetales et d'autre ,part dans les astrocytes et neurones catécholaminergiques issus de leur différenciation. De plus, ces expériences ont mis en évidence un rôle de l'AQP9 dans l'entrée du glycérol dans les astrocytes, ce qui pourrait être bénéfique dans des conditions d'ischémie. Enfin, les .résultats de cette étude suggèrent également un rôle de l'AQP9 dans le métabolisme énergétique des astrocytes. L'ensemble de ces travaux démontre le rôle important de l'AQP9 dans le cerveau et ouvre de nouvelles perspectives quant aux rôles des AQPs dans des situations pathologiques telles que l'ischémie cérébrale ou encore la maladie de Parkinson.