31 resultados para Logical Mathematical Structuration of Reality
em Université de Lausanne, Switzerland
Resumo:
The purpose of this study was to develop a two-compartment metabolic model of brain metabolism to assess oxidative metabolism from [1-(11)C] acetate radiotracer experiments, using an approach previously applied in (13)C magnetic resonance spectroscopy (MRS), and compared with an one-tissue compartment model previously used in brain [1-(11)C] acetate studies. Compared with (13)C MRS studies, (11)C radiotracer measurements provide a single uptake curve representing the sum of all labeled metabolites, without chemical differentiation, but with higher temporal resolution. The reliability of the adjusted metabolic fluxes was analyzed with Monte-Carlo simulations using synthetic (11)C uptake curves, based on a typical arterial input function and previously published values of the neuroglial fluxes V(tca)(g), V(x), V(nt), and V(tca)(n) measured in dynamic (13)C MRS experiments. Assuming V(x)(g)=10 × V(tca)(g) and V(x)(n)=V(tca)(n), it was possible to assess the composite glial tricarboxylic acid (TCA) cycle flux V(gt)(g) (V(gt)(g)=V(x)(g) × V(tca)(g)/(V(x)(g)+V(tca)(g))) and the neurotransmission flux V(nt) from (11)C tissue-activity curves obtained within 30 minutes in the rat cortex with a beta-probe after a bolus infusion of [1-(11)C] acetate (n=9), resulting in V(gt)(g)=0.136±0.042 and V(nt)=0.170±0.103 μmol/g per minute (mean±s.d. of the group), in good agreement with (13)C MRS measurements.
Resumo:
A recent study of a pair of sympatric species of cichlids in Lake Apoyo in Nicaragua is viewed as providing probably one of the most convincing examples of sympatric speciation to date. Here, we describe and study a stochastic, individual-based, explicit genetic model tailored for this cichlid system. Our results show that relatively rapid (<20,000 generations) colonization of a new ecological niche and (sympatric or parapatric) speciation via local adaptation and divergence in habitat and mating preferences are theoretically plausible if: (i) the number of loci underlying the traits controlling local adaptation, and habitat and mating preferences is small; (ii) the strength of selection for local adaptation is intermediate; (iii) the carrying capacity of the population is intermediate; and (iv) the effects of the loci influencing nonrandom mating are strong. We discuss patterns and timescales of ecological speciation identified by our model, and we highlight important parameters and features that need to be studied empirically to provide information that can be used to improve the biological realism and power of mathematical models of ecological speciation.
Resumo:
Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.
Resumo:
The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.
Resumo:
Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.
Resumo:
Introduction In my thesis I argue that economic policy is all about economics and politics. Consequently, analysing and understanding economic policy ideally has at least two parts. The economics part, which is centered around the expected impact of a specific policy on the real economy both in terms of efficiency and equity. The insights of this part point into which direction the fine-tuning of economic policies should go. However, fine-tuning of economic policies will be most likely subject to political constraints. That is why, in the politics part, a much better understanding can be gained by taking into account how the incentives of politicians and special interest groups as well as the role played by different institutional features affect the formation of economic policies. The first part and chapter of my thesis concentrates on the efficiency-related impact of economic policies: how does corporate income taxation in general, and corporate income tax progressivity in specific, affect the creation of new firms? Reduced progressivity and flat-rate taxes are in vogue. By 2009, 22 countries are operating flat-rate income tax systems, as do 7 US states and 14 Swiss cantons (for corporate income only). Tax reform proposals in the spirit of the "flat tax" model typically aim to reduce three parameters: the average tax burden, the progressivity of the tax schedule, and the complexity of the tax code. In joint work, Marius Brülhart and I explore the implications of changes in these three parameters on entrepreneurial activity, measured by counts of firm births in a panel of Swiss municipalities. Our results show that lower average tax rates and reduced complexity of the tax code promote firm births. Controlling for these effects, reduced progressivity inhibits firm births. Our reading of these results is that tax progressivity has an insurance effect that facilitates entrepreneurial risk taking. The positive effects of lower tax levels and reduced complexity are estimated to be significantly stronger than the negative effect of reduced progressivity. To the extent that firm births reflect desirable entrepreneurial dynamism, it is not the flattening of tax schedules that is key to successful tax reforms, but the lowering of average tax burdens and the simplification of tax codes. Flatness per se is of secondary importance and even appears to be detrimental to firm births. The second part of my thesis, which corresponds to the second and third chapter, concentrates on how economic policies are formed. By the nature of the analysis, these two chapters draw on a broader literature than the first chapter. Both economists and political scientists have done extensive research on how economic policies are formed. Thereby, researchers in both disciplines have recognised the importance of special interest groups trying to influence policy-making through various channels. In general, economists base their analysis on a formal and microeconomically founded approach, while abstracting from institutional details. In contrast, political scientists' frameworks are generally richer in terms of institutional features but lack the theoretical rigour of economists' approaches. I start from the economist's point of view. However, I try to borrow as much as possible from the findings of political science to gain a better understanding of how economic policies are formed in reality. In the second chapter, I take a theoretical approach and focus on the institutional policy framework to explore how interactions between different political institutions affect the outcome of trade policy in presence of special interest groups' lobbying. Standard political economy theory treats the government as a single institutional actor which sets tariffs by trading off social welfare against contributions from special interest groups seeking industry-specific protection from imports. However, these models lack important (institutional) features of reality. That is why, in my model, I split up the government into a legislative and executive branch which can both be lobbied by special interest groups. Furthermore, the legislative has the option to delegate its trade policy authority to the executive. I allow the executive to compensate the legislative in exchange for delegation. Despite ample anecdotal evidence, bargaining over delegation of trade policy authority has not yet been formally modelled in the literature. I show that delegation has an impact on policy formation in that it leads to lower equilibrium tariffs compared to a standard model without delegation. I also show that delegation will only take place if the lobby is not strong enough to prevent it. Furthermore, the option to delegate increases the bargaining power of the legislative at the expense of the lobbies. Therefore, the findings of this model can shed a light on why the U.S. Congress often practices delegation to the executive. In the final chapter of my thesis, my coauthor, Antonio Fidalgo, and I take a narrower approach and focus on the individual politician level of policy-making to explore how connections to private firms and networks within parliament affect individual politicians' decision-making. Theories in the spirit of the model of the second chapter show how campaign contributions from lobbies to politicians can influence economic policies. There exists an abundant empirical literature that analyses ties between firms and politicians based on campaign contributions. However, the evidence on the impact of campaign contributions is mixed, at best. In our paper, we analyse an alternative channel of influence in the shape of personal connections between politicians and firms through board membership. We identify a direct effect of board membership on individual politicians' voting behaviour and an indirect leverage effect when politicians with board connections influence non-connected peers. We assess the importance of these two effects using a vote in the Swiss parliament on a government bailout of the national airline, Swissair, in 2001, which serves as a natural experiment. We find that both the direct effect of connections to firms and the indirect leverage effect had a strong and positive impact on the probability that a politician supported the government bailout.
Resumo:
AbstractDigitalization gives to the Internet the power by allowing several virtual representations of reality, including that of identity. We leave an increasingly digital footprint in cyberspace and this situation puts our identity at high risks. Privacy is a right and fundamental social value that could play a key role as a medium to secure digital identities. Identity functionality is increasingly delivered as sets of services, rather than monolithic applications. So, an identity layer in which identity and privacy management services are loosely coupled, publicly hosted and available to on-demand calls could be more realistic and an acceptable situation. Identity and privacy should be interoperable and distributed through the adoption of service-orientation and implementation based on open standards (technical interoperability). Ihe objective of this project is to provide a way to implement interoperable user-centric digital identity-related privacy to respond to the need of distributed nature of federated identity systems. It is recognized that technical initiatives, emerging standards and protocols are not enough to guarantee resolution for the concerns surrounding a multi-facets and complex issue of identity and privacy. For this reason they should be apprehended within a global perspective through an integrated and a multidisciplinary approach. The approach dictates that privacy law, policies, regulations and technologies are to be crafted together from the start, rather than attaching it to digital identity after the fact. Thus, we draw Digital Identity-Related Privacy (DigldeRP) requirements from global, domestic and business-specific privacy policies. The requirements take shape of business interoperability. We suggest a layered implementation framework (DigldeRP framework) in accordance to model-driven architecture (MDA) approach that would help organizations' security team to turn business interoperability into technical interoperability in the form of a set of services that could accommodate Service-Oriented Architecture (SOA): Privacy-as-a-set-of- services (PaaSS) system. DigldeRP Framework will serve as a basis for vital understanding between business management and technical managers on digital identity related privacy initiatives. The layered DigldeRP framework presents five practical layers as an ordered sequence as a basis of DigldeRP project roadmap, however, in practice, there is an iterative process to assure that each layer supports effectively and enforces requirements of the adjacent ones. Each layer is composed by a set of blocks, which determine a roadmap that security team could follow to successfully implement PaaSS. Several blocks' descriptions are based on OMG SoaML modeling language and BPMN processes description. We identified, designed and implemented seven services that form PaaSS and described their consumption. PaaSS Java QEE project), WSDL, and XSD codes are given and explained.
Resumo:
Background: Microarray data is frequently used to characterize the expression profile of a whole genome and to compare the characteristics of that genome under several conditions. Geneset analysis methods have been described previously to analyze the expression values of several genes related by known biological criteria (metabolic pathway, pathology signature, co-regulation by a common factor, etc.) at the same time and the cost of these methods allows for the use of more values to help discover the underlying biological mechanisms. Results: As several methods assume different null hypotheses, we propose to reformulate the main question that biologists seek to answer. To determine which genesets are associated with expression values that differ between two experiments, we focused on three ad hoc criteria: expression levels, the direction of individual gene expression changes (up or down regulation), and correlations between genes. We introduce the FAERI methodology, tailored from a two-way ANOVA to examine these criteria. The significance of the results was evaluated according to the self-contained null hypothesis, using label sampling or by inferring the null distribution from normally distributed random data. Evaluations performed on simulated data revealed that FAERI outperforms currently available methods for each type of set tested. We then applied the FAERI method to analyze three real-world datasets on hypoxia response. FAERI was able to detect more genesets than other methodologies, and the genesets selected were coherent with current knowledge of cellular response to hypoxia. Moreover, the genesets selected by FAERI were confirmed when the analysis was repeated on two additional related datasets. Conclusions: The expression values of genesets are associated with several biological effects. The underlying mathematical structure of the genesets allows for analysis of data from several genes at the same time. Focusing on expression levels, the direction of the expression changes, and correlations, we showed that two-step data reduction allowed us to significantly improve the performance of geneset analysis using a modified two-way ANOVA procedure, and to detect genesets that current methods fail to detect.
Resumo:
Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.
Resumo:
In vivo localized proton magnetic resonance spectroscopy (1H MRS) became a powerful and unique technique to non-invasively investigate brain metabolism of rodents and humans. The main goal of 1H MRS is the reliable quantification of concentrations of metabolites (neurochemical profile) in a well-defined region of the brain. The availability of very high magnetic field strengths combined with the possibility of acquiring spectra at very short echo time have dramatically increased the number of constituents of the neurochemical profile. The quantification of spectra measured at short echo times is complicated by the presence of macromolecule signals of particular importance at high magnetic fields. An error in the macromolecule estimation can lead to substantial errors in the obtained neurochemical profile. The purpose of the present review is to overview methods of high field 1H MRS with a focus on the metabolite quantification, in particular in handling signals of macromolecules. Three main approaches of handling signals of macromolecules are described, namely mathematical estimation of macromolecules, measurement of macromolecules in vivo, and direct acquisition of the in vivo spectrum without the contribution of macromolecules.
Resumo:
Recent years have seen a surge in mathematical modeling of the various aspects of neuron-astrocyte interactions, and the field of brain energy metabolism is no exception in that regard. Despite the advent of biophysical models in the field, the long-lasting debate on the role of lactate in brain energy metabolism is still unresolved. Quite the contrary, it has been ported to the world of differential equations. Here, we summarize the present state of this discussion from the modeler's point of view and bring some crucial points to the attention of the non-mathematically proficient reader.
Resumo:
The time constant of cerebral arterial bed (in brief time constant) is a product of brain arterial compliance (C(a)) and resistance (CVR). We tested the hypothesis that in normal subjects, changes in end-tidal CO(2) (EtCO(2)) affect the value of the time constant. C(a) and CVR were estimated using mathematical transformations of arterial pressure (ABP) and transcranial Doppler (TCD) cerebral blood flow velocity waveforms. Responses of the time constant to controlled changes in EtCO(2) were compared in 34 young volunteers. Hypercapnia shortened the time constant (0.22 s [0.17, 0.26] vs. 0.16 s [0.13, 0.20]; p = 0.000001), while hypocapnia lengthened the time constant (0.22 s [0.17, 0.26] vs. 0.23 s [0.19, 0.32]; p < 0.0032). The time constant was negatively correlated with changes in EtCO(2) (R(partial) = -0.68, p < 0.000001). This was associated with a decrease in CVR when EtCO(2) increased (R(partial) = -0.80, p < 0.000001) and C(a) remained independent of changes in EtCO(2). C(a) was negatively correlated with mean ABP (R(partial) = -0.68, p < 0.000001). In summary, the time constant shortens with increasing EtCO(2). Its potential role in cerebrovascular investigations needs further studies.
Resumo:
OBJECTIVE: To evaluate the power of various parameters of the vestibulo-ocular reflex (VOR) in detecting unilateral peripheral vestibular dysfunction and in characterizing certain inner ear pathologies. STUDY DESIGN: Prospective study of consecutive ambulatory patients presenting with acute onset of peripheral vertigo and spontaneous nystagmus. SETTING: Tertiary referral center. PATIENTS: Seventy-four patients (40 females, 34 males) and 22 normal subjects (11 females, 11 males) were included in the study. Patients were classified in three main diagnoses: vestibular neuritis: 40; viral labyrinthitis: 22; Meniere's disease: 12. METHODS: The VOR function was evaluated by standard caloric and impulse rotary tests (velocity step). A mathematical model of vestibular function was used to characterize the VOR response to rotational stimulation. The diagnostic value of the different VOR parameters was assessed by uni- and multivariable logistic regression. RESULTS: In univariable analysis, caloric asymmetry emerged as the most powerful VOR parameter in identifying unilateral vestibular deficit, with a boundary limit set at 20%. In multivariable analysis, the combination of caloric asymmetry and rotational time constant asymmetry significantly improved the discriminatory power over caloric alone (p<0.0001) and produced a detection score with a correct classification of 92.4%. In discriminating labyrinthine diseases, different combinations of the VOR parameters were obtained for each diagnosis (p<0.003) supporting that the VOR characteristics differ between the three inner ear disorders. However, the clinical usefulness of these characteristics in separating the pathologies was limited. CONCLUSION: We propose a powerful logistic model combining the indices of caloric and time constant asymmetries to detect a peripheral vestibular loss, with an accuracy of 92.4%. Based on vestibular data only, the discrimination between the different inner ear diseases is statistically possible, which supports different pathophysiologic changes in labyrinthine pathologies.
Resumo:
PURPOSE OF REVIEW: HIV targets primary CD4(+) T cells. The virus depends on the physiological state of its target cells for efficient replication, and, in turn, viral infection perturbs the cellular state significantly. Identifying the virus-host interactions that drive these dynamic changes is important for a better understanding of viral pathogenesis and persistence. The present review focuses on experimental and computational approaches to study the dynamics of viral replication and latency. RECENT FINDINGS: It was recently shown that only a fraction of the inducible latently infected reservoirs are successfully induced upon stimulation in ex-vivo models while additional rounds of stimulation make allowance for reactivation of more latently infected cells. This highlights the potential role of treatment duration and timing as important factors for successful reactivation of latently infected cells. The dynamics of HIV productive infection and latency have been investigated using transcriptome and proteome data. The cellular activation state has shown to be a major determinant of viral reactivation success. Mathematical models of latency have been used to explore the dynamics of the latent viral reservoir decay. SUMMARY: Timing is an important component of biological interactions. Temporal analyses covering aspects of viral life cycle are essential for gathering a comprehensive picture of HIV interaction with the host cell and untangling the complexity of latency. Understanding the dynamic changes tipping the balance between success and failure of HIV particle production might be key to eradicate the viral reservoir.