58 resultados para Linear Viscoelastic Materials
em Université de Lausanne, Switzerland
Resumo:
Purpose: To evaluate whether the correlation between in vitro bond strength data and estimated clinical retention rates of cervical restorations after two years depends on pooled data obtained from multicenter studies or single-test data. Materials and Methods: Pooled mean data for six dentin adhesive systems (Adper Prompt L-Pop, Clearfil SE, OptiBond FL, Prime & Bond NT, Single Bond, and Scotchbond Multipurpose) and four laboratory methods (macroshear, microshear, macrotensile and microtensile bond strength test) (Scherrer et al, 2010) were correlated to estimated pooled two-year retention rates of Class V restorations using the same adhesive systems. For bond strength data from a single test institute, the literature search in SCOPUS revealed one study that tested all six adhesive systems (microtensile) and two that tested five of the six systems (microtensile, macroshear). The correlation was determined with a database designed to perform a meta-analysis on the clinical performance of cervical restorations (Heintze et al, 2010). The clinical data were pooled and adjusted in a linear mixed model, taking the study effect, dentin preparation, type of isolation and bevelling of enamel into account. A regression analysis was carried out to evaluate the correlation between clinical and laboratory findings. Results: The results of the regression analysis for the pooled data revealed that only the macrotensile (adjusted R2 = 0.86) and microtensile tests (adjusted R2 = 0.64), but not the shear and the microshear tests, correlated well with the clinical findings. As regards the data from a single-test institute, the correlation was not statistically significant. Conclusion: Macrotensile and microtensile bond strength tests showed an adequate correlation with the retention rate of cervical restorations after two years. Bond strength tests should be carried out by different operators and/or research institutes to determine the reliability and technique sensitivity of the material under investigation.
Resumo:
PURPOSE: To determine the local control and complication rates for children with papillary and/or macular retinoblastoma progressing after chemotherapy and undergoing stereotactic radiotherapy (SRT) with a micromultileaf collimator. METHODS AND MATERIALS: Between 2004 and 2008, 11 children (15 eyes) with macular and/or papillary retinoblastoma were treated with SRT. The mean age was 19 months (range, 2-111). Of the 15 eyes, 7, 6, and 2 were classified as International Classification of Intraocular Retinoblastoma Group B, C, and E, respectively. The delivered dose of SRT was 50.4 Gy in 28 fractions using a dedicated micromultileaf collimator linear accelerator. RESULTS: The median follow-up was 20 months (range, 13-39). Local control was achieved in 13 eyes (87%). The actuarial 1- and 2-year local control rates were both 82%. SRT was well tolerated. Late adverse events were reported in 4 patients. Of the 4 patients, 2 had developed focal microangiopathy 20 months after SRT; 1 had developed a transient recurrence of retinal detachment; and 1 had developed bilateral cataracts. No optic neuropathy was observed. CONCLUSIONS: Linear accelerator-based SRT for papillary and/or macular retinoblastoma in children resulted in excellent tumor control rates with acceptable toxicity. Additional research regarding SRT and its intrinsic organ-at-risk sparing capability is justified in the framework of prospective trials.
Resumo:
STATEMENT OF PROBLEM: Wear of methacrylate artificial teeth resulting in vertical loss is a problem for both dentists and patients. PURPOSE: The purpose of this study was to quantify wear of artificial teeth in vivo and to relate it to subject and tooth variables. MATERIAL AND METHODS: Twenty-eight subjects treated with complete dentures received 2 artificial tooth materials (polymethyl methacrylate (PMMA)/double-cross linked PMMA fillers; 35%/59% (SR Antaris DCL, SR Postaris DCL); experimental 48%/46%). At baseline and after 12 months, impressions of the dentures were poured with improved stone. After laser scanning, the casts were superimposed and matched. Maximal vertical loss (mm) and volumetric loss (mm(3)) were calculated for each tooth and log-transformed to reduce variability. Volumetric loss was related to the occlusally active surface area. Linear mixed models were used to study the influence of the factors jaw, tooth, and material on adjusted (residual) wear values (alpha=.05). RESULTS: Due to drop outs (n=5) and unmatchable casts (n=3), 69% of all teeth were analyzed. Volumetric loss had a strong linear relationship to surface area (P<.001); this was less pronounced for vertical loss (P=.004). The factor showing the highest influence was the subject. Wear was tooth dependent (increasing from incisors to molars). However, these differences diminished once the wear rates were adjusted for occlusal area, and only a few remained significant (anterior versus posterior maxillary teeth). Another influencing factor was the age of the subject. CONCLUSIONS: Clinical wear of artificial teeth is higher than previously measured or expected. The presented method of analyzing wear of artificial teeth using a laser-scanning device seemed suitable.
Resumo:
OBJECTIVE: (1) To quantify wear of two different denture tooth materials in vivo with two study designs, (2) to relate tooth variables to vertical loss. METHODS: Two different denture tooth materials had been used (experimental material=test; DCL=control). In study 1 (split-mouth, 6 test centers) 60 subjects received complete dentures, in study 2 (two-arm, 1 test center) 29 subjects. In study 1 the mandibular dentures were supported by implants in 33% of the subjects, in study 2 only in 3% of the subjects. Impressions of the dentures were taken and poured with improved stone at baseline and after 6, 12, 18 and 24 months. Each operator evaluated the wear subjectively. Wear analysis was carried out with a laser scanning device. Maximal vertical loss of the attrition zones was calculated for each tooth cusp and tooth. A mixed linear model was used to statistically analyse the logarithmically transformed wear data. RESULTS: Due to drop-outs and unmatchable casts, only 47 subjects of study 1 and 14 of study 2 completed the 2-year recall. Overall, 75% of all teeth present could be analysed. There was no statistically difference in the overall wear between the test and control material for either study 1 or study 2. The relative increase in wear over time was similar in both study designs. However, a strong subject effect and center effect were observed. The fixed factors included in the model (time, tooth, center, etc.) accounted for 43% of the variability, whereas the random subject effect accounted for another 30% of the variability, leaving about 28% of unexplained variability. More wear was consistently recorded in the maxillary teeth compared to the mandibular teeth and in the first molar teeth compared to the premolar teeth and the second molars. Likewise, the supporting cusps showed more wear than the non-supporting cusps. The amount of wear did not depend on whether or not the lower dentures were supported by implants. The subjective wear was correct in about 67% of the cases if it is postulated that a wear difference of 100μm should be subjectively detectable. SIGNIFICANCE: The clinical wear of denture teeth is highly variable with a strong patient effect. More wear can be expected in maxillary denture teeth compared to mandibular teeth, first molars compared to premolars and supported cusps compared to non-supported cusps. Laboratory data on the wear of denture tooth materials may not be confirmed in well-structured clinical trials probably due to the large inter-individual variability.
Resumo:
Molecular monitoring of BCR/ABL transcripts by real time quantitative reverse transcription PCR (qRT-PCR) is an essential technique for clinical management of patients with BCR/ABL-positive CML and ALL. Though quantitative BCR/ABL assays are performed in hundreds of laboratories worldwide, results among these laboratories cannot be reliably compared due to heterogeneity in test methods, data analysis, reporting, and lack of quantitative standards. Recent efforts towards standardization have been limited in scope. Aliquots of RNA were sent to clinical test centers worldwide in order to evaluate methods and reporting for e1a2, b2a2, and b3a2 transcript levels using their own qRT-PCR assays. Total RNA was isolated from tissue culture cells that expressed each of the different BCR/ABL transcripts. Serial log dilutions were prepared, ranging from 100 to 10-5, in RNA isolated from HL60 cells. Laboratories performed 5 independent qRT-PCR reactions for each sample type at each dilution. In addition, 15 qRT-PCR reactions of the 10-3 b3a2 RNA dilution were run to assess reproducibility within and between laboratories. Participants were asked to run the samples following their standard protocols and to report cycle threshold (Ct), quantitative values for BCR/ABL and housekeeping genes, and ratios of BCR/ABL to housekeeping genes for each sample RNA. Thirty-seven (n=37) participants have submitted qRT-PCR results for analysis (36, 37, and 34 labs generated data for b2a2, b3a2, and e1a2, respectively). The limit of detection for this study was defined as the lowest dilution that a Ct value could be detected for all 5 replicates. For b2a2, 15, 16, 4, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. For b3a2, 20, 13, and 4 labs showed a limit of detection at the 10-5, 10-4, and 10-3 dilutions, respectively. For e1a2, 10, 21, 2, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. Log %BCR/ABL ratio values provided a method for comparing results between the different laboratories for each BCR/ABL dilution series. Linear regression analysis revealed concordance among the majority of participant data over the 10-1 to 10-4 dilutions. The overall slope values showed comparable results among the majority of b2a2 (mean=0.939; median=0.9627; range (0.399 - 1.1872)), b3a2 (mean=0.925; median=0.922; range (0.625 - 1.140)), and e1a2 (mean=0.897; median=0.909; range (0.5174 - 1.138)) laboratory results (Fig. 1-3)). Thirty-four (n=34) out of the 37 laboratories reported Ct values for all 15 replicates and only those with a complete data set were included in the inter-lab calculations. Eleven laboratories either did not report their copy number data or used other reporting units such as nanograms or cell numbers; therefore, only 26 laboratories were included in the overall analysis of copy numbers. The median copy number was 348.4, with a range from 15.6 to 547,000 copies (approximately a 4.5 log difference); the median intra-lab %CV was 19.2% with a range from 4.2% to 82.6%. While our international performance evaluation using serially diluted RNA samples has reinforced the fact that heterogeneity exists among clinical laboratories, it has also demonstrated that performance within a laboratory is overall very consistent. Accordingly, the availability of defined BCR/ABL RNAs may facilitate the validation of all phases of quantitative BCR/ABL analysis and may be extremely useful as a tool for monitoring assay performance. Ongoing analyses of these materials, along with the development of additional control materials, may solidify consensus around their application in routine laboratory testing and possible integration in worldwide efforts to standardize quantitative BCR/ABL testing.
Resumo:
Biological materials are increasingly used in abdominal surgery for ventral, pelvic and perineal reconstructions, especially in contaminated fields. Future applications are multi-fold and include prevention and one-step closure of infected areas. This includes prevention of abdominal, parastomal and pelvic hernia, but could also include prevention of separation of multiple anastomoses, suture- or staple-lines. Further indications could be a containment of infected and/or inflammatory areas and protection of vital implants such as vascular grafts. Reinforcement patches of high-risk anastomoses or unresectable perforation sites are possibilities at least. Current applications are based mostly on case series and better data is urgently needed. Clinical benefits need to be assessed in prospective studies to provide reliable proof of efficacy with a sufficient follow-up. Only superior results compared with standard treatment will justify the higher costs of these materials. To date, the use of biological materials is not standard and applications should be limited to case-by-case decision.
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
OBJECTIVE: We examined the correlation between clinical wear rates of restorative materials and enamel (TRAC Research Foundation, Provo, USA) and the results of six laboratory test methods (ACTA, Alabama (generalized, localized), Ivoclar (vertical, volumetric), Munich, OHSU (abrasion, attrition), Zurich). METHODS: Individual clinical wear data were available from clinical trials that were conducted by TRAC Research Foundation (formerly CRA) together with general practitioners. For each of the n=28 materials (21 composite resins for intra-coronal restorations [20 direct and 1 indirect], 5 resin materials for crowns, 1 amalgam, enamel) a minimum of 30 restorations had been placed in posterior teeth, mainly molars. The recall intervals were up to 5 years with the majority of materials (n=27) being monitored, however, only for up to 2 years. For the laboratory data, the databases MEDLINE and IADR abstracts were searched for wear data on materials which were also clinically tested by TRAC Research Foundation. Only those data for which the same test parameters (e.g. number of cycles, loading force, type of antagonist) had been published were included in the study. A different quantity of data was available for each laboratory method: Ivoclar (n=22), Zurich (n=20), Alabama (n=17), OHSU and ACTA (n=12), Munich (n=7). The clinical results were summed up in an index and a linear mixed model was fitted to the log wear measurements including the following factors: material, time (0.5, 1, 2 and 3 years), tooth (premolar/molar) and gender (male/female) as fixed effects, and patient as random effect. Relative ranks were created for each material and method; the same was performed with the clinical results. RESULTS: The mean age of the subjects was 40 (±12) years. The materials had been mostly applied in molars (81%) and 95% of the intracoronal restorations were Class II restorations. The mean number of individual wear data per material was 25 (range 14-42). The mean coefficient of variation of clinical wear data was 53%. The only significant correlation was reached by OHSU (abrasion) with a Spearman r of 0.86 (p=0.001). Zurich, ACTA, Alabama generalized wear and Ivoclar (volume) had correlation coefficients between 0.3 and 0.4. For Zurich, Alabama generalized wear and Munich, the correlation coefficient improved if only composites for direct use were taken into consideration. The combination of different laboratory methods did not significantly improve the correlation. SIGNIFICANCE: The clinical wear of composite resins is mainly dependent on differences between patients and less on the differences between materials. Laboratory methods to test conventional resins for wear are therefore less important, especially since most of them do not reflect the clinical wear.
Resumo:
Different embolic materials for portal vein embolization (PVE) were evaluated. Twenty pigs received left and median PVE. Hydrophilic phosphorylcholine, N-butyl cyanoacrylate, hydrophilic gel, and polyvinyl alcohol (PVA) particles measuring either 50-150 microm or 700-900 microm were used in five pigs each. Portography and portal vein pressure measurement were performed before, immediately after PVE, and before being euthanized at day 7. Tissue wedges from embolized, and non-embolized liver were obtained for pathology. After complete embolization, recanalization occurred at 7 days in one gel and one 700-900 PVA embolization. Post-PVE increase in portal pressure was found in all groups (p = 0.01). The area of the hepatic lobules in non-embolized liver was larger than in the embolized liver in all groups (p = 0.001). The ratios of the areas between non-embolized/embolized livers were 1.65, 2.19, 1.57, and 1.32 for gel, NBCA, 50-150 PVA and 700-900 PVA, respectively; the ratios of fibrosis between the embolized and non-embolized livers were 1.37, 3.01, 3.49, and 2.11 for gel, NBCA, 50-150 PVA and 700-900 PVA, respectively. Hepatic lobules in non-embolized liver were significantly larger with NBCA than in other groups (p = 0.01). Fibrosis in embolized liver was significantly higher for NBCA and 50-150 PVA (p = 0.002). The most severe changes in embolized and non-embolized liver were induced by 50-150 PVA and NCBA PVE.
Resumo:
OBJECTIVES: We examined the correlation between the quantitative margin analysis of two laboratory test methods (Berlin, Zurich) and the clinical outcome in Class V restorations. METHODS: Prospective clinical studies with an observation period of at least 18 months were searched in the literature, for which laboratory data were also available. The clinical outcome variables were retention loss, marginal discoloration, detectable margins and secondary caries. Forty-four clinical studies matched the inclusion criteria, including 34 adhesive systems for which laboratory data were also present. For both laboratory test methods and the clinical studies, an index was formulated to better compare the in vitro and in vivo results. Linear mixed models which included a random study effect were calculated. As most clinical data were available for 12 and 24 months, the main analysis was restricted to these recall intervals. RESULTS: The comparative analysis revealed a weak correlation between the clinical index and both in vitro indices. The correlation was statistically significant for the Berlin method but not for the Zurich method and only present if studies were compared which used the same composite in the in vitro and in vivo study. When defining specific cut-off values, the prognosis for the good clinical performance of an adhesive system based on in vitro results was 78% (Berlin) or 100% (Zurich). For poor performance it was 67% and 60%, respectively. No correlation was found between both in vitro methods. SIGNIFICANCE: The surrogate parameter "marginal adaptation" of restorations placed in extracted teeth has a mediocre value to predict the clinical performance of an adhesive system in cervical cavities. The composite is an important factor for a successful prediction. The comparison between in vitro/in vivo is sometimes hampered by the great variability of clinical results on the same adhesive system.
Resumo:
OBJECTIVE: The purpose of this study was to compare the use of different variables to measure the clinical wear of two denture tooth materials in two analysis centers. METHODS: Twelve edentulous patients were provided with full dentures. Two different denture tooth materials (experimental material and control) were placed randomly in accordance with the split-mouth design. For wear measurements, impressions were made after an adjustment phase of 1-2 weeks and after 6, 12, 18, and 24 months. The occlusal wear of the posterior denture teeth of 11 subjects was assessed in two study centers by use of plaster replicas and 3D laser-scanning methods. In both centers sequential scans of the occlusal surfaces were digitized and superimposed. Wear was described by use of four different variables. Statistical analysis was performed after log-transformation of the wear data by use of the Pearson and Lin correlation and by use of a mixed linear model. RESULTS: Mean occlusal vertical wear of the denture teeth after 24 months was between 120μm and 212μm, depending on wear variable and material. For three of the four variables, wear of the experimental material was statistically significantly less than that of the control. Comparison of the two study centers, however, revealed correlation of the wear variables was only moderate whereas strong correlation was observed among the different wear variables evaluated by each center. SIGNIFICANCE: Moderate correlation was observed for clinical wear measurements by optical 3D laser scanning in two different study centers. For the two denture tooth materials, wear measurements limited to the attrition zones led to the same qualitative assessment.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the scale of a field site represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed downscaling procedure based on a non-linear Bayesian sequential simulation approach. The main objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity logged at collocated wells and surface resistivity measurements, which are available throughout the studied site. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariatekernel density function. Then a stochastic integration of low-resolution, large-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities is applied. The overall viability of this downscaling approach is tested and validated by comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure allows obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
RATIONALE AND OBJECTIVES: To determine optimum spatial resolution when imaging peripheral arteries with magnetic resonance angiography (MRA). MATERIALS AND METHODS: Eight vessel diameters ranging from 1.0 to 8.0 mm were simulated in a vascular phantom. A total of 40 three-dimensional flash MRA sequences were acquired with incremental variations of fields of view, matrix size, and slice thickness. The accurately known eight diameters were combined pairwise to generate 22 "exact" degrees of stenosis ranging from 42% to 87%. Then, the diameters were measured in the MRA images by three independent observers and with quantitative angiography (QA) software and used to compute the degrees of stenosis corresponding to the 22 "exact" ones. The accuracy and reproducibility of vessel diameter measurements and stenosis calculations were assessed for vessel size ranging from 6 to 8 mm (iliac artery), 4 to 5 mm (femoro-popliteal arteries), and 1 to 3 mm (infrapopliteal arteries). Maximum pixel dimension and slice thickness to obtain a mean error in stenosis evaluation of less than 10% were determined by linear regression analysis. RESULTS: Mean errors on stenosis quantification were 8.8% +/- 6.3% for 6- to 8-mm vessels, 15.5% +/- 8.2% for 4- to 5-mm vessels, and 18.9% +/- 7.5% for 1- to 3-mm vessels. Mean errors on stenosis calculation were 12.3% +/- 8.2% for observers and 11.4% +/- 15.1% for QA software (P = .0342). To evaluate stenosis with a mean error of less than 10%, maximum pixel surface, the pixel size in the phase direction, and the slice thickness should be less than 1.56 mm2, 1.34 mm, 1.70 mm, respectively (voxel size 2.65 mm3) for 6- to 8-mm vessels; 1.31 mm2, 1.10 mm, 1.34 mm (voxel size 1.76 mm3), for 4- to 5-mm vessels; and 1.17 mm2, 0.90 mm, 0.9 mm (voxel size 1.05 mm3) for 1- to 3-mm vessels. CONCLUSION: Higher spatial resolution than currently used should be selected for imaging peripheral vessels.