89 resultados para Limit theorems (Probability theory)
em Université de Lausanne, Switzerland
Exact asymptotics and limit theorems for supremum of stationary chi-processes over a random interval
Resumo:
A lot of research in cognition and decision making suffers from a lack of formalism. The quantum probability program could help to improve this situation, but we wonder whether it would provide even more added value if its presumed focus on outcome models were complemented by process models that are, ideally, informed by ecological analyses and integrated into cognitive architectures.
Resumo:
This paper presents and discusses further aspects of the subjectivist interpretation of probability (also known as the 'personalist' view of probabilities) as initiated in earlier forensic and legal literature. It shows that operational devices to elicit subjective probabilities - in particular the so-called scoring rules - provide additional arguments in support of the standpoint according to which categorical claims of forensic individualisation do not follow from a formal analysis under that view of probability theory.
Resumo:
Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates difficulties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks. Includes self-contained introductions to probability and decision theory. Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. Features implementation of the methodology with reference to commercial and academically available software. Presents standard networks and their extensions that can be easily implemented and that can assist in the reader's own analysis of real cases. Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. Includes a foreword by Ian Evett. The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.
Resumo:
Sampling issues represent a topic of ongoing interest to the forensic science community essentially because of their crucial role in laboratory planning and working protocols. For this purpose, forensic literature described thorough (Bayesian) probabilistic sampling approaches. These are now widely implemented in practice. They allow, for instance, to obtain probability statements that parameters of interest (e.g., the proportion of a seizure of items that present particular features, such as an illegal substance) satisfy particular criteria (e.g., a threshold or an otherwise limiting value). Currently, there are many approaches that allow one to derive probability statements relating to a population proportion, but questions on how a forensic decision maker - typically a client of a forensic examination or a scientist acting on behalf of a client - ought actually to decide about a proportion or a sample size, remained largely unexplored to date. The research presented here intends to address methodology from decision theory that may help to cope usefully with the wide range of sampling issues typically encountered in forensic science applications. The procedures explored in this paper enable scientists to address a variety of concepts such as the (net) value of sample information, the (expected) value of sample information or the (expected) decision loss. All of these aspects directly relate to questions that are regularly encountered in casework. Besides probability theory and Bayesian inference, the proposed approach requires some additional elements from decision theory that may increase the efforts needed for practical implementation. In view of this challenge, the present paper will emphasise the merits of graphical modelling concepts, such as decision trees and Bayesian decision networks. These can support forensic scientists in applying the methodology in practice. How this may be achieved is illustrated with several examples. The graphical devices invoked here also serve the purpose of supporting the discussion of the similarities, differences and complementary aspects of existing Bayesian probabilistic sampling criteria and the decision-theoretic approach proposed throughout this paper.
Resumo:
BACKGROUND: Solexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology. RESULTS: We propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads. CONCLUSION: We show that the method improves genome coverage and number of usable tags as compared with Solexa's data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexa's fluorescence intensity files and the production of informative diagnostic plots.
Resumo:
Unlike the evaluation of single items of scientific evidence, the formal study and analysis of the jointevaluation of several distinct items of forensic evidence has to date received some punctual, ratherthan systematic, attention. Questions about the (i) relationships among a set of (usually unobservable)propositions and a set of (observable) items of scientific evidence, (ii) the joint probative valueof a collection of distinct items of evidence as well as (iii) the contribution of each individual itemwithin a given group of pieces of evidence still represent fundamental areas of research. To somedegree, this is remarkable since both, forensic science theory and practice, yet many daily inferencetasks, require the consideration of multiple items if not masses of evidence. A recurrent and particularcomplication that arises in such settings is that the application of probability theory, i.e. the referencemethod for reasoning under uncertainty, becomes increasingly demanding. The present paper takesthis as a starting point and discusses graphical probability models, i.e. Bayesian networks, as frameworkwithin which the joint evaluation of scientific evidence can be approached in some viable way.Based on a review of existing main contributions in this area, the article here aims at presentinginstances of real case studies from the author's institution in order to point out the usefulness andcapacities of Bayesian networks for the probabilistic assessment of the probative value of multipleand interrelated items of evidence. A main emphasis is placed on underlying general patterns of inference,their representation as well as their graphical probabilistic analysis. Attention is also drawnto inferential interactions, such as redundancy, synergy and directional change. These distinguish thejoint evaluation of evidence from assessments of isolated items of evidence. Together, these topicspresent aspects of interest to both, domain experts and recipients of expert information, because theyhave bearing on how multiple items of evidence are meaningfully and appropriately set into context.
Resumo:
At a time when disciplined inference and decision making under uncertainty represent common aims to participants in legal proceedings, the scientific community is remarkably heterogenous in its attitudes as to how these goals ought to be achieved. Probability and decision theory exert a considerable influence, and we think by all reason rightly do so, but they go against a mainstream of thinking that does not embrace-or is not aware of-the 'normative' character of this body of theory. It is normative, in the sense understood in this article, in that it prescribes particular properties, typically (logical) coherence, to which reasoning and decision making ought to conform. Disregarding these properties can result in diverging views which are occasionally used as an argument against the theory, or as a pretext for not following it. Typical examples are objections according to which people, both in everyday life but also individuals involved at various levels in the judicial process, find the theory difficult to understand and to apply. A further objection is that the theory does not reflect how people actually behave. This article aims to point out in what sense these examples misinterpret the analytical framework in its normative perspective. Through examples borrowed mostly from forensic science contexts, it is argued that so-called intuitive scientific attitudes are particularly liable to such misconceptions. These attitudes are contrasted with a statement of the actual liberties and constraints of probability and decision theory and the view according to which this theory is normative.
Resumo:
Game theory describes and analyzes strategic interaction. It is usually distinguished between static games, which are strategic situations in which the players choose only once as well as simultaneously, and dynamic games, which are strategic situations involving sequential choices. In addition, dynamic games can be further classified according to perfect and imperfect information. Indeed, a dynamic game is said to exhibit perfect information, whenever at any point of the game every player has full informational access to all choices that have been conducted so far. However, in the case of imperfect information some players are not fully informed about some choices. Game-theoretic analysis proceeds in two steps. Firstly, games are modelled by so-called form structures which extract and formalize the significant parts of the underlying strategic interaction. The basic and most commonly used models of games are the normal form, which rather sparsely describes a game merely in terms of the players' strategy sets and utilities, and the extensive form, which models a game in a more detailed way as a tree. In fact, it is standard to formalize static games with the normal form and dynamic games with the extensive form. Secondly, solution concepts are developed to solve models of games in the sense of identifying the choices that should be taken by rational players. Indeed, the ultimate objective of the classical approach to game theory, which is of normative character, is the development of a solution concept that is capable of identifying a unique choice for every player in an arbitrary game. However, given the large variety of games, it is not at all certain whether it is possible to device a solution concept with such universal capability. Alternatively, interactive epistemology provides an epistemic approach to game theory of descriptive character. This rather recent discipline analyzes the relation between knowledge, belief and choice of game-playing agents in an epistemic framework. The description of the players' choices in a given game relative to various epistemic assumptions constitutes the fundamental problem addressed by an epistemic approach to game theory. In a general sense, the objective of interactive epistemology consists in characterizing existing game-theoretic solution concepts in terms of epistemic assumptions as well as in proposing novel solution concepts by studying the game-theoretic implications of refined or new epistemic hypotheses. Intuitively, an epistemic model of a game can be interpreted as representing the reasoning of the players. Indeed, before making a decision in a game, the players reason about the game and their respective opponents, given their knowledge and beliefs. Precisely these epistemic mental states on which players base their decisions are explicitly expressible in an epistemic framework. In this PhD thesis, we consider an epistemic approach to game theory from a foundational point of view. In Chapter 1, basic game-theoretic notions as well as Aumann's epistemic framework for games are expounded and illustrated. Also, Aumann's sufficient conditions for backward induction are presented and his conceptual views discussed. In Chapter 2, Aumann's interactive epistemology is conceptually analyzed. In Chapter 3, which is based on joint work with Conrad Heilmann, a three-stage account for dynamic games is introduced and a type-based epistemic model is extended with a notion of agent connectedness. Then, sufficient conditions for backward induction are derived. In Chapter 4, which is based on joint work with Jérémie Cabessa, a topological approach to interactive epistemology is initiated. In particular, the epistemic-topological operator limit knowledge is defined and some implications for games considered. In Chapter 5, which is based on joint work with Jérémie Cabessa and Andrés Perea, Aumann's impossibility theorem on agreeing to disagree is revisited and weakened in the sense that possible contexts are provided in which agents can indeed agree to disagree.
Resumo:
We construct a dynamic theory of civil conflict hinging on inter-ethnic trust and trade. The model economy is inhabitated by two ethnic groups. Inter-ethnic trade requires imperfectly observed bilateral investments and one group has to form beliefs on the average propensity to trade of the other group. Since conflict disrupts trade, the onset of a conflict signals that the aggressor has a low propensity to trade. Agents observe the history of conflicts and update their beliefs over time, transmitting them to the next generation. The theory bears a set of testable predictions. First, war is a stochastic process whose frequency depends on the state of endogenous beliefs. Second, the probability of future conflicts increases after each conflict episode. Third, "accidental" conflicts that do not reflect economic fundamentals can lead to a permanent breakdown of trust, plunging a society into a vicious cycle of recurrent conflicts (a war trap). The incidence of conflict can be reduced by policies abating cultural barriers, fostering inter-ethnic trade and human capital, and shifting beliefs. Coercive peace policies such as peacekeeping forces or externally imposed regime changes have instead no persistent effects.
Resumo:
The present paper studies the probability of ruin of an insurer, if excess of loss reinsurance with reinstatements is applied. In the setting of the classical Cramer-Lundberg risk model, piecewise deterministic Markov processes are used to describe the free surplus process in this more general situation. It is shown that the finite-time ruin probability is both the solution of a partial integro-differential equation and the fixed point of a contractive integral operator. We exploit the latter representation to develop and implement a recursive algorithm for numerical approximation of the ruin probability that involves high-dimensional integration. Furthermore we study the behavior of the finite-time ruin probability under various levels of initial surplus and security loadings and compare the efficiency of the numerical algorithm with the computational alternative of stochastic simulation of the risk process. (C) 2011 Elsevier Inc. All rights reserved.