75 resultados para Light and electron microscopy

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In correlative microscopy, light microscopy provides the overview and orientation of the complex cells and tissue, while electron microscopy offers the detailed localization and correlation of subcellular structures. In this chapter we offer detailed high-quality electron microscopical preparation methods for optimum preservation of the cellular ultrastructure. From such preparations serial thin sections are collected and used for comparative histochemical, immunofluorescence, and immunogold staining.In light microscopy histological stains identify the orientation of the sample and immunofluorescence labeling facilitates to find the region of interest, namely, the labeled cells expressing the macromolecule under investigation. Sections, labeled with immunogold are analyzed by electron microscopy in order to identify the label within the cellular architecture at high resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of a parasite and a host cell is a complex process, which involves several steps: (1) attachment to the plasma membrane, (2) entry inside the host cell, and (3) hijacking of the metabolism of the host. In biochemical experiments, only an event averaged over the whole cell population can be analyzed. The power of microscopy, however, is to investigate individual events in individual cells. Therefore, parasitologists frequently perform experiments with fluorescence microscopy using different dyes to label structures of the parasite or the host cell. Though the resolution of light microscopy has greatly improved, it is not sufficient to reveal interactions at the ultrastructural level. Furthermore, only specifically labeled structures can be seen and related to each other. Here, we want to demonstrate the additional value of electron microscopy in this area of research. Investigation of the different steps of parasite-host cell interaction by electron microscopy, however, is often hampered by the fact that there are only a few cells infected, and therefore it is difficult to find enough cells to study. A solution is to profit from low magnification, hence large overview, and specific location of the players by fluorescence labels in a light microscope with the high power resolution and structural information provided by an electron microscope, in short by correlative light and electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo imaging of green fluorescent protein (GFP)-labeled neurons in the intact brain is being used increasingly to study neuronal plasticity. However, interpreting the observed changes as modifications in neuronal connectivity needs information about synapses. We show here that axons and dendrites of GFP-labeled neurons imaged previously in the live mouse or in slice preparations using 2-photon laser microscopy can be analyzed using light and electron microscopy, allowing morphological reconstruction of the synapses both on the imaged neurons, as well as those in the surrounding neuropil. We describe how, over a 2-day period, the imaged tissue is fixed, sliced and immuno-labeled to localize the neurons of interest. Once embedded in epoxy resin, the entire neuron can then be drawn in three dimensions (3D) for detailed morphological analysis using light microscopy. Specific dendrites and axons can be further serially thin sectioned, imaged in the electron microscope (EM) and then the ultrastructure analyzed on the serial images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correlative fluorescence and electron microscopy has become an indispensible tool for research in cell biology. The integrated Laser and Electron Microscope (iLEM) combines a Fluorescence Microscope (FM) and a Transmission Electron Microscope (TEM) within one set-up. This unique imaging tool allows for rapid identification of a region of interest with the FM, and subsequent high resolution TEM imaging of this area. Sample preparation is one of the major challenges in correlative microscopy of a single specimen; it needs to be apt for both FM and TEM imaging. For iLEM, the performance of the fluorescent probe should not be impaired by the vacuum of the TEM. In this technical note, we have compared the fluorescence intensity of six fluorescent probes in a dry, oxygen free environment relative to their performance in water. We demonstrate that the intensity of some fluorophores is strongly influenced by its surroundings, which should be taken into account in the design of the experiment. Furthermore, a freeze-substitution and Lowicryl resin embedding protocol is described that yields excellent membrane contrast in the TEM but prevents quenching of the fluorescent immuno-labeling. The embedding protocol results in a single specimen preparation procedure that performs well in both FM and TEM. Such procedures are not only essential for the iLEM, but also of great value to other correlative microscopy approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Gastric or intestinal patches, commonly used for reconstructive cystoplasty, may induce severe metabolic complications. The use of bladder tissues reconstructed in vitro could avoid these complications. We compared cellular differentiation and permeability characteristics of human native with in vitro cultured stratified urothelium. MATERIALS AND METHODS: Human stratified urothelium was induced in vitro. Morphology was studied with light and electron microscopy and expression of key cellular proteins was assessed using immunohistochemistry. Permeability coefficients were determined by measuring water, urea, ammonia and proton fluxes across the urothelium. RESULTS: As in native urothelium the stratified urothelial construct consisted of basal membrane and basal, intermediate and superficial cell layers. The apical membrane of superficial cells formed villi and glycocalices, and tight junctions and desmosomes were developed. Immunohistochemistry showed similarities and differences in the expression of cytokeratins, integrin and cellular adhesion proteins. In the cultured urothelium cytokeratin 20 and integrin subunits alpha6 and beta4 were absent, and symplekin was expressed diffusely in all layers. Uroplakins were clearly expressed in the superficial umbrella cells of the urothelial constructs, however, they were also present in intermediate and basal cells. Symplekin and uroplakins were expressed only in the superficial cells of native bladder tissue. The urothelial constructs showed excellent viability, and functionally their permeabilities for water, urea and ammonia were no different from those measured in native human urothelium. Proton permeability was even lower in the constructs compared to that of native urothelium. CONCLUSIONS: Although the in vitro cultured human stratified urothelium did not show complete terminal differentiation of its superficial cells, it retained the same barrier characteristics against the principal urine components. These results indicate that such in vitro cultured urothelium, after being grown on a compliant degradable support or in coculture with smooth muscle cells, is suitable for reconstructive cystoplasty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Two mutations (R555Q and R124L) in the BIGH3 gene have been described in anterior or Bowman's layer dystrophies (CDB). The clinical, molecular, and ultrastructural findings of five families with CDB was reviewed to determine whether there is a consistent genotype:phenotype correlation. METHODS: Keratoplasty tissue from each patient was examined by light and electron microscopy (LM and EM). DNA was obtained, and exons 4 and 12 of BIGH3 were analyzed by polymerase chain reaction and single-stranded conformation polymorphism/heteroduplex analysis. Abnormally migrating products were analyzed by direct sequencing. RESULTS: In two families with type I CDB (CDBI), the R124L mutation was defined. There were light and ultrastructural features of superficial granular dystrophy and atypical banding of the "rod-shaped bodies" ultrastructurally. Patients from three families with "honeycomb" dystrophy were found to carry the R555Q mutation and had characteristic features of Bowman's dystrophy type II (CDBII). CONCLUSIONS: There is a strong genotype:phenotype correlation among CBDI (R124L) and CDBII (R555Q). LM and EM findings suggest that epithelial abnormalities may underlie the pathology of both conditions. The findings clarify the confusion over classification of the Bowman's layer dystrophies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In mice, barrels in layer IV of the somatosensory cortex correspond to the columnar representations of whisker follicles. In barrelless (BRL) mice, barrels are absent, but functionally, a columnar organization persists. Previously we characterized the aberrant geometry of thalamic projection of BRL mice using axonal reconstructions of individual neurons. Here we proceeded with the analysis of the intracortical projections from layer VI pyramidal neurons, to assess their contribution to the columnar organization. From series of tangential sections we reconstructed the axon collaterals of individual layer VI pyramidal neurons in the C2 barrel column that were labelled with biocytin [controls from normal (NOR) strain, 19 cells; BRL strain, nine cells]. Using six morphological parameters in a cluster analysis, we showed that layer VI neurons in NOR mice are distributed into four clusters distinguished by the radial and tangential extent of their intracortical projections. These clusters correlated with the cortical or subcortical projection of the main axon. In BRL mice, neurons were distributed within the same four clusters, but their projections to the granular and supragranular layers were significantly smaller and their tangential projection was less columnar than in NOR mice. However, in both strains the intracortical projections had a preference for the appropriate barrel column (C2), indicating that layer VI pyramidal cells could participate in the functional columnar organization of the barrel cortex. Correlative light and electron microscopy analyses provided morphometric data on the intracortical synaptic boutons and synapses of layer VI pyramidal neurons and revealed that projections to layer IV preferentially target excitatory dendritic spines and shafts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array tomography. More and more efforts are put in either converting a fluorescence label into an electron dense product or preserving the fluorescence throughout preparation for the electron microscopy. Here, we will review successful protocols and where possible try to extract common features to better understand the importance of the individual steps in the preparation. Further the new instruments and software, intended to ease correlative light and electron microscopy, are discussed. Last but not least we will detail the approach we have chosen for correlative microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Congenital, nonepidermolytic cornification disorders phenotypically resembling human autosomal recessive ichthyosis have been described in purebred dog breeds, including Jack Russell terrier (JRT) dogs. One cause of gene mutation important to humans and dogs is transposon insertions. OBJECTIVES: To describe an autosomal recessive, severe nonepidermolytic ichthyosis resembling lamellar ichthyosis (LI) in JRT dogs due to insertion of a long interspersed nucleotide element (LINE-1) in the transglutaminase 1 (TGM1) gene. METHODS: Dogs were evaluated clinically, and skin samples were examined by light and electron microscopy. Phenotypic information and genotyping with a canine microsatellite marker suggested TGM1 to be a candidate gene. Genomic DNA samples and cDNA generated from epidermal RNA were examined. Consequences of the mutation were evaluated by Western blotting, quantitative reverse transcription-polymerase chain reaction (RT-PCR) and enzyme activity from cultured keratinocytes. RESULTS: Affected dogs had generalized severe hyperkeratosis. Histological examination defined laminated to compact hyperkeratosis without epidermolysis; ultrastructurally, cornified envelopes were thin. Affected dogs were homozygous for a 1980-bp insertion within intron 9 of TGM1. The sequence of the insertion was that of a canine LINE-1 element. Quantitative RT-PCR indicated a significant decrease in TGM1 mRNA in affected dogs compared with wild-type. TGM1 protein was markedly decreased on immunoblotting, and membrane-associated enzyme activity was diminished in affected dogs. CONCLUSIONS: Based on morphological and molecular features, this disease is homologous with TGM1-deficient LI in humans, clinically models LI better than the genetically modified mouse and represents its first spontaneous animal model. This is the first reported form of LI due to transposon insertion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To study the combination of oligodeoxynucleotides (ODNs) intravitreous injection and saline transpalpebral iontophoresis on the delivery of ODNs to photoreceptors in the newborn rd1/rd1 mice. METHODS: Cathodal or anodal transpalpebral iontophoresis (1.43 mA/cm(2) for 5 min) was applied to eyes of postnatal day 7 (PN7) rd1/rd1 mice immediately before the intravitreous injection of ODNs. The effect of cathodal iontophoresis after ODNs injection was also evaluated. The influence of current intensity (0.5, 1.5, and 2.5 mA) was assayed with cathodal iontophoresis performed prior to ODNs injection. The duration of current-induced facilitation of ODNs delivery to photoreceptors was evaluated for 6 h following iontophoresis. One group of control eyes received cathodal iontophoresis prior to the intravitreous injection of phosphate buffered saline (PBS) or hexachlorofluorescein (Hex). The second control group received ODN or Hex intravitreous injection without iontophoresis. The penetration of fluorescent ODNs in the outer nuclear layer (ONL) was quantified by image analysis of the ONL fluorescence intensity on cryosection microphotographs. Integrity of ODN was assessed using acrylamide gel migration after its extraction from the retina of treated mice. The integrity of retinal structure, 1 and 24 h after iontophoresis, was analyzed using light and electron microscopy. RESULTS: Transpalpebral anodal or cathodal saline iontophoresis enhanced the penetration of ODNs in all retinal layers. Cathodal iontophoresis was more efficient than anodal iontophoresis in enhancing the tissue penetration of the injected ODN. Photoreceptor delivery of ODN was significantly higher when cathodal saline transpalpebral iontophoresis was applied prior than after the injection. The extent of enhanced tissue penetration decreased in parallel to the increased interval between iontophoresis application and the intravitreous injection. Current of 1.5 mA was safe and optimal for the delivery of ODNs to the ONL. One hour after iontophoresis followed by injection, ODN extracted from the retina of treated eyes remained intact. Histology and electron microscopy observations demonstrated that iontophoresis using the optimal parameters did not induce any permanent tissue alterations or structure damage. CONCLUSIONS: Saline transpalpebral iontophoresis facilitates the penetration of injected ODNs in photoreceptors for at least 3 h. This method may be considered for photoreceptor targeted gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To describe new affected individuals of Franceschetti's original pedigree of hereditary recurrent erosion and to classify a unique entity called Franceschetti corneal dystrophy. DESIGN: Observational case series. METHODS: Slit-lamp examination of 10 affected individuals was conducted. Biomicroscopic examinations were supplemented by peripheral corneal biopsy in 1 affected patient with corneal haze. Tissue was processed for light and electron microscopy and immunohistochemistry was performed. DNA analysis was carried out in 12 affected and 3 nonaffected family members. RESULTS: All affected individuals suffered from severe ocular pain in the first decade of life, attributable to recurrent corneal erosions. Six adult patients developed bilateral diffuse subepithelial opacifications in the central and paracentral cornea. The remaining 4 affected individuals had clear corneas in the pain-free stage of the disorder. Histologic and immunohistochemical examination of the peripheral cornea in a single patient showed a subepithelial, avascular pannus. There was negative staining with Congo red. DNA analysis excluded mutations in the transforming growth factor beta-induced (TGFBI) gene and in the tumor-associated calcium signal transducer 2 (TACSTD2) gene. CONCLUSION: We have extended the pedigree of Franceschetti corneal dystrophy and elaborated its natural history on the basis of clinical examinations. A distinctive feature is the appearance of subepithelial opacities in adult life, accompanied by a decreased frequency of recurrent erosion attacks. Its clinical features appear to distinguish it from most other forms of dominantly inherited recurrent corneal erosion reported in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malate synthase (MS; EC 4.1.3.2), an enzyme specific to the glyoxylate cycle, was studied in cotyledons of dark-grown soybean (Glycine max L) seedlings with light and electron microscopy techniques. Immunogold localization confirmed biochemical evidence that MS from soybean is a glyoxysomal matrix enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of antigenicity. Finally, an important feature of this approach is that the fluorescence of the GFP signal is preserved throughout the entire preparation process until the last step before electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial (M) and lipid droplet (L) volume density (vd) are often used in exercise research. Vd is the volume of muscle occupied by M and L. The means of calculating these percents are accomplished by applying a grid to a 2D image taken with transmission electron microscopy; however, it is not known which grid best predicts these values. PURPOSE: To determine the grid with the least variability of Mvd and Lvd in human skeletal muscle. METHODS: Muscle biopsies were taken from vastus lateralis of 10 healthy adults, trained (N=6) and untrained (N=4). Samples of 5-10mg were fixed in 2.5% glutaraldehyde and embedded in EPON. Longitudinal sections of 60 nm were cut and 20 images were taken at random at 33,000x magnification. Vd was calculated as the number of times M or L touched two intersecting grid lines (called a point) divided by the total number of points using 3 different sizes of grids with squares of 1000x1000nm sides (corresponding to 1µm2), 500x500nm (0.25µm2) and 250x250nm (0.0625µm2). Statistics included coefficient of variation (CV), 1 way-BS ANOVA and spearman correlations. RESULTS: Mean age was 67 ± 4 yo, mean VO2peak 2.29 ± 0.70 L/min and mean BMI 25.1 ± 3.7 kg/m2. Mean Mvd was 6.39% ± 0.71 for the 1000nm squares, 6.01% ± 0.70 for the 500nm and 6.37% ± 0.80 for the 250nm. Lvd was 1.28% ± 0.03 for the 1000nm, 1.41% ± 0.02 for the 500nm and 1.38% ± 0.02 for the 250nm. The mean CV of the three grids was 6.65% ±1.15 for Mvd with no significant differences between grids (P>0.05). Mean CV for Lvd was 13.83% ± 3.51, with a significant difference between the 1000nm squares and the two other grids (P<0.05). The 500nm squares grid showed the least variability between subjects. Mvd showed a positive correlation with VO2peak (r = 0.89, p < 0.05) but not with weight, height, or age. No correlations were found with Lvd. CONCLUSION: Different size grids have different variability in assessing skeletal muscle Mvd and Lvd. The grid size of 500x500nm (240 points) was more reliable than 1000x1000nm (56 points). 250x250nm (1023 points) did not show better reliability compared with the 500x500nm, but was more time consuming. Thus, choosing a grid with square size of 500x500nm seems the best option. This is particularly relevant as most grids used in the literature are either 100 points or 400 points without clear information on their square size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axial deflection of DNA molecules in solution results from thermal motion and intrinsic curvature related to the DNA sequence. In order to measure directly the contribution of thermal motion we constructed intrinsically straight DNA molecules and measured their persistence length by cryo-electron microscopy. The persistence length of such intrinsically straight DNA molecules suspended in thin layers of cryo-vitrified solutions is about 80 nm. In order to test our experimental approach, we measured the apparent persistence length of DNA molecules with natural "random" sequences. The result of about 45 nm is consistent with the generally accepted value of the apparent persistence length of natural DNA sequences. By comparing the apparent persistence length to intrinsically straight DNA with that of natural DNA, it is possible to determine both the dynamic and the static contributions to the apparent persistence length.